Indian Journal of Microbiology

, Volume 56, Issue 1, pp 35–45 | Cite as

Microbial Diversity in Soil, Sand Dune and Rock Substrates of the Thar Monsoon Desert, India

  • Subramanya Rao
  • Yuki Chan
  • Donnabella C. Bugler-Lacap
  • Ashish Bhatnagar
  • Monica Bhatnagar
  • Stephen B. Pointing
Original Article

Abstract

A culture-independent diversity assessment of archaea, bacteria and fungi in the Thar Desert in India was made. Six locations in Ajmer, Jaisalmer, Jaipur and Jodhupur included semi-arid soils, arid soils, arid sand dunes, plus arid cryptoendolithic substrates. A real-time quantitative PCR approach revealed that bacteria dominated soils and cryptoendoliths, whilst fungi dominated sand dunes. The archaea formed a minor component of all communities. Comparison of rRNA-defined community structure revealed that substrate and climate rather than location were the most parsimonious predictors. Sequence-based identification of 1240 phylotypes revealed that most taxa were common desert microorganisms. Semi-arid soils were dominated by actinobacteria and alpha proteobacteria, arid soils by chloroflexi and alpha proteobacteria, sand dunes by ascomycete fungi and cryptoendoliths by cyanobacteria. Climatic variables that best explained this distribution were mean annual rainfall and maximum annual temperature. Substrate variables that contributed most to observed diversity patterns were conductivity, soluble salts, Ca2+ and pH. This represents an important addition to the inventory of desert microbiota, novel insight into the abiotic drivers of community assembly, and the first report of biodiversity in a monsoon desert system.

Keywords

Cyanobacteria Desert Fungi Sand dune Soil 

References

  1. 1.
    UNEP (1992) In: Middleton N, Thomas D, (eds) World atlas of desertification. Edward Arnold, LondonGoogle Scholar
  2. 2.
    Pointing SB, Belnap J (2012) Microbial colonization and controls in dryland systems. Nat Rev Microbiol 10:551–562. doi:10.1038/nrmicro2831 CrossRefPubMedGoogle Scholar
  3. 3.
    Fierer N, Leff J, Adams BJ, Nielsen UN, Bates ST, Lauber CL, Owens S, Gilbert JA, Wall DH, Caporaso JG (2012) Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc Natl Acad Sci USA 109:21390–21395. doi:10.1073/pnas.1215210110 PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Wierzchos J, Ríos ADL, Ascaso C (2012) Microorganisms in desert rocks: the edge of life on Earth. Int Microbiol 15:173–183PubMedGoogle Scholar
  5. 5.
    Chan Y, Lacap DC, Lau MCY, Ha KY, Warren-Rhodes KA, Cockell CS, Cowan DA, Mc Kay CP, Pointing SB (2012) Hypolithic microbial communities: between a rock and a hard place. Environ Microbiol 14:2272–2282. doi:10.1111/j.1462-2920.2012.02821 CrossRefPubMedGoogle Scholar
  6. 6.
    Makhalanyane TP, Valverde A, Gunnigle E, Frossard A, Ramond JB, Cowan DA (2015) Microbial ecology of hot desert edaphic systems. FEMS Microbiol Rev 39:203–221. doi:10.1093/femsre/fuu011 CrossRefPubMedGoogle Scholar
  7. 7.
    Belnap J, Büdel B, Lange OL (2003) Biological soil crusts: characteristics and distribution. In: Belnap J, Lange OL (eds) Biology soil crusts: structure function and management. Springer, Berlin, pp 3–30CrossRefGoogle Scholar
  8. 8.
    Weber B, Wessels DC, Deutschewitz K, Dojani S, Reichenberger H, Büdel B (2013) Ecological characterization of soil-inhabiting and hypolithic soil crusts within the Knersvlakte, South Africa. Ecol Process 2:8. doi:10.1186/2192-1709-2-8 CrossRefGoogle Scholar
  9. 9.
    Chanal A, Chapon V, Benzerara K, Barakat M, Christen R, Achouak W, Barras F, Heulin T (2006) The desert of Tataouine: an extreme environment that hosts a wide diversity of microorganisms and radiotolerant bacteria. Environ Microbiol 8:514–525. doi:10.1111/j.1462-2920.2005.00921 CrossRefPubMedGoogle Scholar
  10. 10.
    Connon S, Lester E, Shafaat H, Al E (2007) Bacterial diversity in hyperarid Atacama Desert soils. J Geophys Res Biogeosci 112:G04S17. doi:10.1029/2006JG000311 CrossRefGoogle Scholar
  11. 11.
    Lester ED, Satomi M, Ponce A (2007) Microflora of extreme arid Atacama Desert soils. Soil Biol Biochem 39:704–708. doi:10.1016/j.soilbio.2006.09.020 CrossRefGoogle Scholar
  12. 12.
    Pointing SB, Belnap J (2014) Disturbance to desert soil ecosystems contributes to dust-mediated impacts at regional scales. Biodivers Conserv 23:1659–1667. doi:10.1007/s10531-014-0690-x CrossRefGoogle Scholar
  13. 13.
    Warren-Rhodes KA, Rhodes KL, Pointing SB, Ewing SA, Lacap DC, Gómez-Silva B, Amundson R, Friedmann EI, McKay CP (2006) Hypolithic cyanobacteria, dry limit of photosynthesis, and microbial ecology in the hyperarid Atacama Desert. Microb Ecol 52:389–398CrossRefPubMedGoogle Scholar
  14. 14.
    Pointing SB, Warren-Rhodes KA, Lacap DC, Rhodes KL, McKay CP (2007) Hypolithic community shifts occur as a result of liquid water availability along environmental gradients in China’s hot and cold hyperarid deserts. Environ Microbiol 9:414–424. PMID:17222139Google Scholar
  15. 15.
    Warren-Rhodes KA, Rhodes KL, Boyle LN, Pointing SB, Chen Y, Liu S, Zhuo P, McKay CP (2007) Cyanobacterial ecology across environmental gradients and spatial scales in China’s hot and cold deserts. FEMS Microbiol Ecol 61:470–482. doi:10.1111/j.1574-6941.2007.00351 CrossRefPubMedGoogle Scholar
  16. 16.
    Caruso T, Chan Y, Lacap DC, Lau MCY, McKay CP, Pointing SB (2011) Stochastic and deterministic processes interact in the assembly of desert microbial communities on a global scale. ISME J 5:1406–1413. doi:10.1038/ismej.2011.21 PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Valverde A, Makhalanyane TP, Cowan DA (2014) Contrasting assembly processes in a bacterial metacommunity along a desiccation gradient. Front Microbiol 5:668. doi:10.3389/fmicb.2014.00668 PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Laity J (2008) Deserts and desert environments. Wiley-Blackwell, ChichesterGoogle Scholar
  19. 19.
    Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703PubMedCentralPubMedGoogle Scholar
  20. 20.
    Baker GC, Smith JJ, Cowan DA (2003) Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 55:541–555CrossRefPubMedGoogle Scholar
  21. 21.
    White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, Inc., New York, pp 315–322Google Scholar
  22. 22.
    Abdo Z, Schuette UM, Bent SJ, Williams CJ, Forney LJ, Joyce P (2006) Statistical methods for characterizing diversity of microbial communities by analysis of terminal restriction fragment length polymorphisms of 16S rRNA genes. Environ Microbiol 8:929–938. doi:10.1111/j.1462-2920.2005.00959.x CrossRefPubMedGoogle Scholar
  23. 23.
    Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143. doi:10.1111/j.1442-9993.1993.tb00438.x CrossRefGoogle Scholar
  24. 24.
    Bahl J, Lau MCY, Smith GJD, Vijaykrishna D, Cary SC, Lacap DC, Lee CK, Papke RT, Warren-Rhodes KA, McKay CP, Pointing SB (2011) Ancient origins determine global biogeography of hot and cold desert cyanobacteria. Nat Commun 2:163. doi:10.1038/ncomms1167 PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Pointing SB, Chan Y, Lacap DC, Lau LCY, Jurgens JA, Farrell RL (2009) Highly specialized microbial diversity in hyper-arid polar desert. Proc Natl Acad Sci USA 106:19964–19969. doi:10.1073/pnas.0908274106 PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501–1506. doi:10.1128/AEM.71.3.1501-1506.2005 PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Colwell RK (2013) EstimateS: statistical estimation of species richness and shared species from samples. In: Version 9. User’s Guide and application published at: http://purl.oclc.org/estimates
  28. 28.
    Thompson J, Higgins D, Gibson T (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Swofford DL (2003) PAUP* Phylogenetic Analysis Using Parsimony (*and Other Methods) Version 4Google Scholar
  30. 30.
    Cameron RE (1969) Abundance of Microflora in Soils of Desert Regions, Technical Report 32-7378, JPL. National Aeronautics and Space AdministrationGoogle Scholar
  31. 31.
    Pointing SB, Warren-Rhodes KA, Lacap DC, Rhodes KL, McKay CP (2007) Hypolithic community shifts occur as a result of liquid water availability along environmental gradients in China’s hot and cold hyperarid deserts. Environ Microbiol 9:414–424. doi:10.1111/j.1462-2920.2006.01153.x CrossRefPubMedGoogle Scholar
  32. 32.
    Wong FKY, Lacap DC, Lau MCY, Atchison JC, Cowan DA, Pointing SB (2010) Hypolithic microbial community of quartz pavement in the high-altitude tundra of central Tibet. Microb Ecol 60:730–739. doi:10.1007/s00248-010-9653-2 PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Wood SA, Rueckert A, Cowan DA, Cary SC (2008) Sources of edaphic cyanobacterial diversity in the Dry Valleys of Eastern Antarctica. ISME J 2:308–320. doi:10.1038/ismej.2007.104 CrossRefPubMedGoogle Scholar
  34. 34.
    Lacap DC, Warren-Rhodes KA, McKay CP, Pointing SB (2011) Cyanobacteria and chloroflexi-dominated hypolithic colonization of quartz at the hyper-arid core of the Atacama Desert, Chile. Extremophiles 15:31–38. doi:10.1007/s00792-010-0334-3 PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Rao S, Chan Y, Lacap DC, Hyde KD, Pointing SB, Farrell RL (2011) Low-diversity fungal assemblage in an Antarctic Dry Valleys soil. Polar Biol 35:567–574. doi:10.1007/s00300-011-1102-2 CrossRefGoogle Scholar
  36. 36.
    Anderson KL, Apolinario EE, Sowers KR (2012) Desiccation as a long-term survival mechanism for the archaeon Methanosarcina barkeri. Appl Environ Microbiol 78:1473–1479. doi:10.1128/AEM.06964-11 PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Sterflinger K (2006) Black yeasts and meristematic fungi: ecology, diversity and identification. In: Peter G, Rosa C (eds) Biodiversity and ecophysiology of yeasts. pp 501–514. doi:10.1007/3-540-30985-3_20
  38. 38.
    Padamsee M, Kumar TK, Riley R, Binder M, Boyd A, Calvo AM, Furukawa K, Hesse C, Hohmann S, James TY, LaButti K, Lapidus A, Lindquist E, Lucas S, Miller K, Shantappa S, Grigoriev IV, Hibbett DS, McLaughlin DJ, Spatafora JW, Aime MC (2012) The genome of the xerotolerant mold Wallemia sebi reveals adaptations to osmotic stress and suggests cryptic sexual reproduction. Fungal Genet Biol 49:217–226. doi:10.1016/j.fgb.2012.01.007 CrossRefPubMedGoogle Scholar
  39. 39.
    Gueidan C, Villaseñor CR, de Hoog GS, Gorbushina AA, Untereiner WA, Lutzoni F (2008) A rock-inhabiting ancestor for mutualistic and pathogen-rich fungal lineages. Stud Mycol 61:111–119. doi:10.3114/sim.2008.61.11 PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Rousk J, Brookes PC, Bååth E (2009) Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Appl Environ Microbiol 75:1589–1596. doi:10.1128/AEM.02775-08 PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    Ferreira AC, Nobre MF, Moore E et al (1999) Characterization and radiation resistance of new isolates of Rubrobacter radiotolerans and Rubrobacter xylanophilus. Extremophiles 3:235–238. doi:10.1007/s007920050121 CrossRefPubMedGoogle Scholar
  42. 42.
    Makhalanyane TP, Valverde A, Lacap DC, Pointing SB, Tuffin MI, Cowan DA (2012) Evidence of species recruitment and development of hot desert hypolithic communities. Environ Microbiol Rep 5:219–224. doi:10.1111/1758-2229.12003 CrossRefPubMedGoogle Scholar
  43. 43.
    Lau CY, Jing H, Aitchison JC, Pointing SB (2006) Highly diverse community structure in a remote central Tibetan geothermal spring does not display monotonic variation to thermal stress. FEMS Microbiol Ecol 57:80–91CrossRefGoogle Scholar

Copyright information

© Association of Microbiologists of India 2015

Authors and Affiliations

  • Subramanya Rao
    • 1
  • Yuki Chan
    • 1
  • Donnabella C. Bugler-Lacap
    • 1
  • Ashish Bhatnagar
    • 2
  • Monica Bhatnagar
    • 2
  • Stephen B. Pointing
    • 1
  1. 1.Institute for Applied Ecology New Zealand, School of Applied SciencesAuckland University of TechnologyAucklandNew Zealand
  2. 2.Department of MicrobiologyMaharshi Dayanand Saraswathi UniversityAjmerIndia

Personalised recommendations