Indian Journal of Microbiology

, Volume 55, Issue 4, pp 440–446 | Cite as

Strain Improvement of Streptomyces xanthochromogenes RIA 1098 for Enhanced Pravastatin Production at High Compactin Concentrations

  • Vakhtang V. DzhavakhiyaEmail author
  • Tatiana M. Voinova
  • Elena V. Glagoleva
  • Dmitry V. Petukhov
  • Alexander I. Ovchinnikov
  • Maksim I. Kartashov
  • Boris B. Kuznetsov
  • Konstantin G. Skryabin
Original Article


Pravastatin is one of the most popular cholesterol-lowering drugs. Its industrial production represents a two-stage process including the microbial production of compactin and its further biocatalytic conversion to pravastatin. To increase a conversion rate, a higher compactin content in fermentation medium should be used; however, high compactin concentrations inhibit microbial growth. Therefore, the improvement of the compactin resistance of a producer still remains a relevant problem. A multi-step random UV mutagenesis of a Streptomyces xanthochromogenes strain RIA 1098 and the further selection of high-yield compactin-resistant mutants have resulted in a highly productive compactin-resistant strain S 33-1. After the fermentation medium improvement, the maximum bioconversion rate of this strain has reached 91 % at the daily compactin dose equal to 1 g/L and still remained high (83 %) even at the doubled dose (2 g/L). A 1-year study of the mutant strain stability has proved a stable inheritance of its characteristics that provides this strain to be very promising for the pravastatin-producing industry.


Pravastatin Compactin resistance Streptomyces xanthochromogenes Bioconversion rate UV mutagenesis 


Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

12088_2015_537_MOESM1_ESM.pdf (147 kb)
Supplementary material 1 (PDF 146 kb)
12088_2015_537_MOESM2_ESM.pdf (46 kb)
Supplementary material 2 (PDF 46 kb)


  1. 1.
    Dulak J, Józkowicz A (2005) Anti-angiogenic and anti-inflammatory effects of statins: relevance to anti-cancer therapy. Curr Cancer Drug Targets 5:579–594. doi: 10.2174/156800905774932824 PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Kataria P, Kaur J, Parvez E, Maurya RP (2014) Statins: the paradigm shift in periodontal regeneration. SRM J Res Dent Sci 5:26–30. doi: 10.4103/0976-433X.129069 CrossRefGoogle Scholar
  3. 3.
    dos Santos LF, de Carvalho JC, Rubel R, Soccol CR (2013) Microbial statins. In: Brar SK, Dhillon GS, Soccol CR (eds) Biotransformation of waste biomass into high value biochemicals. Springer, New York, pp 313–335. doi: 10.1007/978-1-4614-8005-1_13 Google Scholar
  4. 4.
    del Sol AI, Nanayakkara PWB (2008) Pravastatin: An evidence-based statin? Expert Opin Drug Metab Toxicol 4:821–825. doi: 10.1517/17425255.4.6.821 CrossRefPubMedGoogle Scholar
  5. 5.
    Al-Badr AA, Mostafa GAE (2014) Pravastatin sodium. In: Brittain HG (ed) Profiles of drug substances, excipients, and related methodology. Elsevier, San Diego, pp 433–513. doi: 10.1016/B978-0-12-800173-8.00008-8 Google Scholar
  6. 6.
    Salat J, Mozes J, Bidlo M, Horvath G, Boros S, Barta I, Birincsik L, Albrecht K, Ambrus G, Konya A, Andor A, Jekkel A, Lang I, Ilkoy E, Szabo I (2005) Hydroxylation of compactin to pravastatin by Micromonospora. US Patent 6,905,851Google Scholar
  7. 7.
    Salat J, Mozes NSJ, Bidlo NIG, Horvath G, Boros S, Barta I, Somogyi G, Birincsik L, Albrecht K, Ambrus G, Konya A, Andor A, Jekkel A, Lang I, Ilkoy E, Szabo I (2007) Microbial process for preparing pravastatin. Canadian Patent 2361701Google Scholar
  8. 8.
    Lin C-L, Tang Y-L, Lin S-M (2011) Efficient bioconversion of compactin to pravastatin by the quinoline-degrading microorganism Pseudonocardia carboxydivorans isolated from petroleum-contaminated soil. Bioresour Technol 102:10187–10193. doi: 10.1016/j.biortech.2011.09.029 CrossRefPubMedGoogle Scholar
  9. 9.
    Mei M, Ji X, Gao X, Chen Y, Li Y, Yao Y, Zhuo Z, Xu J (2009) Microorganism and the process for preparation of pravastatin sodium. US Patent 7,582,464Google Scholar
  10. 10.
    Peng YL, Demain AL (2000) Bioconversion of compactin to pravastatin by Actinomadura sp. ATCC 55678. J Mol Catal B Enzym 10:151–156. doi: 10.1016/s1381-1177(00)00123-5 CrossRefGoogle Scholar
  11. 11.
    Zhang L, Zhang J, Yang W, Bai G (2008) Classification of Streptomyces strain Z314 and purification of its product pravastatin. Wei Sheng Wu Xue Bao 48:33–37PubMedGoogle Scholar
  12. 12.
    Park JW, Lee JK, Kwon TJ, Yi DH, Kim YJ, Moon SH, Suh HH, Kang SM, Park YI (2003) Bioconversion of compactin into pravastatin by Streptomyces sp. Biotechnol Lett 25:1827–1831. doi: 10.1023/A:1026281914301 CrossRefPubMedGoogle Scholar
  13. 13.
    Ukraintseva SN, Voinova TM, Dzhavakhiya VG (2004) Penicillium citrinum strain improvement for compactin production by induced-mutagenesis and optimization of obtained mutant cultivation conditions. In: Zaikov GE (ed) Biotechnology and medicine. Nova Science Publisher Inc., New York, pp 71–78Google Scholar
  14. 14.
    Endo A, Kuroda M, Tsujita Y (1976) ML-236A, ML-236B and ML-236C, new inhibitors of cholesterogenesis produced by Penicillium citrinum. J Antibiot (Tokyo) 29:1346–1348. doi: 10.7164/antibiotics.29.1346 CrossRefGoogle Scholar
  15. 15.
    Dzhavakhiya VV, Voinova TM (2004) Optimization of fermentation conditions for high lovastatin producing mutant 45–50 of fungus Aspergillus terreus. In: Zaikov GE (ed) Biotechnology and industry. Nova Science Publisher Inc., New York, pp 81–87Google Scholar
  16. 16.
    Lane DJ (1991) 16S/23S sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–175Google Scholar
  17. 17.
    Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 84:5463–5467. doi: 10.1073/pnas.74.12.5463 CrossRefGoogle Scholar
  18. 18.
    Stackebrandt E, Ebers J (2006) Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155Google Scholar
  19. 19.
    Lee C-K, Kim D-Y, Suh J-W, Chang J-H (2004) Streptomyces sp. CJPV975652 capable of converting compactin to pravastatin and method for producing pravastatin using the same. International Patent Application WO2004111205Google Scholar
  20. 20.
    Lee J-K, Park J-W, Seo D-J, Lee S-C, Kim J-Y (2001) Microorganism Streptomyces exfoliatus YJ-118 and a method for producing pravastatin sodium by using the strain. US Patent 6,306,629Google Scholar
  21. 21.
    Chen C-H, Hu H-Y, Cho Y-C, Hsu W-H (2006) Screening of compactin-resistant microorganisms capable of converting compactin to pravastatin. Curr Microbiol 53:108–112. doi: 10.1007/s00284-005-0276-7 CrossRefPubMedGoogle Scholar
  22. 22.
    Szabo L, Tchelet R (2010) Process for constructing strain having compactin hydroxylation ability. US Patent 7,700,337Google Scholar
  23. 23.
    Fujii T, Fujii Y, Machida K, Ochiai A, Ito M (2009) Efficient biotransformations using Escherichia coli with tolC acrAB mutations expressing cytochrome P450 genes. Biosci Biotechnol Biochem 73:805–810. doi: 10.1271/bbb.80627 CrossRefPubMedGoogle Scholar
  24. 24.
    Fujii Y, Norihisa K, Fujii T, Aritoku Y, Kagawa Y, Sallam KI, Johdo O, Arisawa A, Tamura T (2011) Construction of a novel expression vector in Pseudonocardia autotrophica and its application to efficient biotransformation of compactin to pravastatin, a specific HMG-CoA reductase inhibitor. Biochem Biophys Res Commun 404:511–516. doi: 10.1016/j.bbrc.2010.12.013 CrossRefPubMedGoogle Scholar
  25. 25.
    McLean KJ, Hans M, Meijrink B, van Scheppingen WB, Vollebregt A, Tee KL, van der Laan J-M, Leys D, Munro AW, van den Berg MA (2015) Single-step fermentative production of the cholesterol-lowering drug pravastatin via reprogramming of Penicillium chrysogenum. Proc Natl Acad Sci 112:2847–2852. doi: 10.1073/pnas.1419028112 PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Kostova I, Ivanova N, Losev V, Dimitrova A, Vasileva R, Todorova D (2004) Method for production of pravastatin by fermentation. European Patent 1452602Google Scholar
  27. 27.
    Lee F-Y, Lee M-L, Hong AC, Chiu S-C (2007) Strains of Saccharotrix, process for producing pravastatin using the strains and isolation process of (HMG-CoA) reductase. US Patent 7,202,062Google Scholar
  28. 28.
    Choi N-H, Tak K-T, Lee K-W, Kim N-H, Jun J-C, Kong Y-L, Lee K-M (2007) Process for preparing pravastatin sodium. US Patent 7,223,590Google Scholar

Copyright information

© Association of Microbiologists of India 2015

Authors and Affiliations

  • Vakhtang V. Dzhavakhiya
    • 1
    Email author
  • Tatiana M. Voinova
    • 1
  • Elena V. Glagoleva
    • 1
  • Dmitry V. Petukhov
    • 1
  • Alexander I. Ovchinnikov
    • 1
  • Maksim I. Kartashov
    • 1
  • Boris B. Kuznetsov
    • 1
  • Konstantin G. Skryabin
    • 1
  1. 1.Laboratory of Biotechnology of Physiologically Active Compounds, Center for BioengineeringRussian Academy of SciencesMoscowRussia

Personalised recommendations