Indian Journal of Microbiology

, Volume 55, Issue 4, pp 349–356 | Cite as

Plausible Drug Targets in the Streptococcus mutans Quorum Sensing Pathways to Combat Dental Biofilms and Associated Risks

  • Gurmeet Kaur
  • Shrinidhi Rajesh
  • S. Adline PrincyEmail author
Review Article


Streptococcus mutans, a Gram positive facultative anaerobe, is one among the approximately seven hundred bacterial species to exist in human buccal cavity and cause dental caries. Quorum sensing (QS) is a cell-density dependent communication process that respond to the inter/intra-species signals and elicit responses to show behavioral changes in the bacteria to an aggressive forms. In accordance to this phenomenon, the S. mutans also harbors a Competing Stimulating Peptide (CSP)-mediated quorum sensing, ComCDE (Two-component regulatory system) to regulate several virulence-associated traits that includes the formation of the oral biofilm (dental plaque), genetic competence and acidogenicity. The QS-mediated response of S. mutans adherence on tooth surface (dental plaque) imparts antibiotic resistance to the bacterium and further progresses to lead a chronic state, known as periodontitis. In recent years, the oral streptococci, S. mutans are not only recognized for its cariogenic potential but also well known to worsen the infective endocarditis due to its inherent ability to colonize and form biofilm on heart valves. The review significantly appreciate the increasing complexity of the CSP-mediated quorum-sensing pathway with a special emphasis to identify the plausible drug targets within the system for the development of anti-quorum drugs to control biofilm formation and associated risks.


Streptococcus mutans Dental biofilms Quorum Sensing CSP ComA Multi-drug resistance 


  1. 1.
    Li Y-H, Tang N, Aspiras MB, Lau PC, Lee JH, Ellen RP, Cvitkovitch DG (2002) A quorum-sensing signaling system essential for genetic competence in Streptococcus mutans is involved in biofilm formation. J Bacteriol 184:2699–2708. doi: 10.1128/JB.184.10.2699-2708.2002 PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Li Y-H, Tian X (2012) Quorum sensing and bacterial social interactions in biofilms. Sensors 12:2519–2538. doi: 10.3390/s120302519 PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Quirynen M, Bollen C (1995) The influence of surface roughness and surface-free energy on supra-and subgingival plaque formation in man. J Clin Periodontol 22:1–14. doi: 10.1111/j.1600-051X.1995.tb01765.x CrossRefPubMedGoogle Scholar
  4. 4.
    Bassler BL (1999) How bacteria talk to each other: regulation of gene expression by quorum sensing. Curr Opin Microbiol 2:582–587. doi: 10.1016/S1369-5274(99)00025-9 CrossRefPubMedGoogle Scholar
  5. 5.
    Kalia VC (2014) In search of versatile organisms for quorum-sensing inhibitors: acyl homoserine lactones (AHL)-acylase and AHL-lactonase. FEMS Microbiol Lett 359:143. doi: 10.1111/1574-6968.12585 CrossRefPubMedGoogle Scholar
  6. 6.
    Kalia VC (ed) (2015) Microbes: the most friendly beings? In: Quorum sensing vs quorum quenching: a battle with no end in sight. Springer India, pp. 1–5. doi: 10.1007/978-81-322-1982-8_1
  7. 7.
    Kalia VC, Raju SC, Purohit HJ (2011) Genomic analysis reveals versatile organisms for quorum quenching enzymes: acyl-homoserine lactone-acylase and-lactonase. Open Microbiol J 5:1. doi: 10.2174/1874285801105010001 PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Kalia VC, Rani A, Lal S, Cheema S, Raut C (2007) Combing databases reveals potential antibiotic producers. Expert Opin Drug Discov 2:211–224. doi: 10.1517/17460441.2.2.211 CrossRefPubMedGoogle Scholar
  9. 9.
    Kalia VC, Kumar P (2015) The battle: quorum-sensing inhibitors versus evolution of bacterial resistance. In: Kalia VC (ed) Quorum sensing vs quorum quenching: a battle with no end in sight. Springer India, pp. 385–391. doi: 10.1007/978-81-322-1982-8_31
  10. 10.
    Kleerebezem M, Quadri LE, Kuipers OP, De Vos WM (1997) Quorum sensing by peptide pheromones and two-component signal-transduction systems in gram-positive bacteria. Mol Microbiol 24:895–904. doi: 10.1046/j.1365-2958.1997.4251782.x CrossRefPubMedGoogle Scholar
  11. 11.
    Fuqua C, Parsek MR, Greenberg EP (2001) Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu Rev Genet 35:439–468. doi: 10.1146/annurev.genet.35.102401.090913 CrossRefPubMedGoogle Scholar
  12. 12.
    Aspiras MB, Ellen RP, Cvitkovitch DG (2004) ComX activity of Streptococcus mutans growing in biofilms. FEMS Microbiol Lett 238:167–174. doi: 10.1016/j.femsle.2004.07.032 PubMedGoogle Scholar
  13. 13.
    Dunny GM, Leonard BA (1997) Cell–cell communication in gram-positive bacteria. Ann Rev Microbiol 51:527–564. doi: 10.1146/annurev.micro.51.1.527 CrossRefGoogle Scholar
  14. 14.
    Senadheera D, Cvitkovitch DG (2008) Quorum sensing and biofilm formation by Streptococcus mutans. Adv Exp Med Biol 631:178–188. doi: 10.1007/978-0-387-78885-2_12 CrossRefPubMedGoogle Scholar
  15. 15.
    Perch B, Kjems E, Ravn T (1974) Biochemical and serological properties of Streptococcus mutans from various human and animal sources. Acta Pathol Microbiol Immunol Scand [B] 82:357–370. doi: 10.1111/j.1699-0463.1974.tb02338.x Google Scholar
  16. 16.
    Ishii S, Yano T, Ebihara A, Okamoto A, Manzoku M, Hayashi H (2010) Crystal structure of the peptidase domain of Streptococcus ComA, a bifunctional ATP-binding cassette transporter involved in the quorum-sensing pathway. J Biol Chem 285:10777–10785. doi: 10.1074/jbc.M109.093781 PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Yoshida A, Kuramitsu HK (2002) Multiple Streptococcus mutans genes are involved in biofilm formation. Appl Environ Microbiol 68:6283–6291. doi: 10.1128/AEM.68.12.6283-6291.2002 PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Princy SA, Bharath D, Krishna PV, Kaur G (2014) Synergetic activity of a quorum sensing inhibitor and antibiotics to combat oral adhesivity of Streptococcus mutans. Biotechnol Indian J 9:175–177Google Scholar
  19. 19.
    Ahn S-J, Wen ZT, Burne RA (2006) Multilevel control of competence development and stress tolerance in Streptococcus mutans UA159. Infect Immun 74:1631–1642. doi: 10.1128/IAI.74.3.1631-1642.2006 PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Chowdhary PK, Keshavan N, Nguyen HQ, Peterson JA, González JE, Haines DC (2007) Bacillus megaterium CYP102A1 oxidation of acyl homoserine lactones and acyl homoserines. Biochemistry 46:14429–14437. doi: 10.1021/bi701945j CrossRefPubMedGoogle Scholar
  21. 21.
    Bassler BL, Wright M, Showalter RE, Silverman MR (1993) Intercellular signalling in Vibrio harveyi: sequence and function of genes regulating expression of luminescence. Mol Microbiol 9:773–786. doi: 10.1111/j.1365-2958.1993.tb01737.x CrossRefPubMedGoogle Scholar
  22. 22.
    Schauder S, Bassler BL (2001) The languages of bacteria. Genes Dev 15:1468–1480. doi: 10.1101/gad.899601 CrossRefPubMedGoogle Scholar
  23. 23.
    Surette MG, Miller MB, Bassler BL (1999) Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: a new family of genes responsible for autoinducer production. Proc Natl Acad Sci 96:1639–1644. doi: 10.1073/pnas.96.4.1639 PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Wen ZT, Burne RA (2004) LuxS-mediated signaling in Streptococcus mutans is involved in regulation of acid and oxidative stress tolerance and biofilm formation. J Bacteriol 186:2682–2691. doi: 10.1128/JB.186.9.2682-2691.2004 PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    DeRiso AJ, Ladowski JS, Dillon TA, Justice JW, Peterson AC (1996) Chlorhexidine gluconate 0.12% oral rinse reduces the incidence of total nosocomial respiratory infection and nonprophylactic systemic antibiotic use in patients undergoing heart surgery. Chest 109:1556–1561. doi: 10.1378/chest.109.6.1556 CrossRefPubMedGoogle Scholar
  26. 26.
    Köhler B, Birkhed D, Olsson S (1995) Acid production by human strains of Streptococcus mutans and Streptococcus sobrinus. Caries Res 29:402–406. doi: 10.1159/000262099 CrossRefPubMedGoogle Scholar
  27. 27.
    Kaplan HB, Plamann L (1996) A Myxococcus xanthus cell density-sensing system required for multicellular development. FEMS Microbiol Lett 139:89–95CrossRefPubMedGoogle Scholar
  28. 28.
    Ravichandiran V, Shanmugam K, Anupama K, Thomas S, Princy A (2012) Structure-based virtual screening for plant-derived SdiA-selective ligands as potential antivirulent agents against uropathogenic Escherichia coli. Eur J Med Chem 48:200–205. doi: 10.1016/j.ejmech.2011.12.015 CrossRefPubMedGoogle Scholar
  29. 29.
    Syvitski RT, Tian X-L, Sampara K, Salman A, Lee SF, Jakeman DL, Li Y-H (2007) Structure-activity analysis of quorum-sensing signaling peptides from Streptococcus mutans. J Bacteriol 189:1441–1450. doi: 10.1128/JB.00832-06 PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Lee MS, Morrison DA (1999) Identification of a new regulator in Streptococcus pneumoniae linking quorum sensing to competence for genetic transformation. J Bacteriol 181:5004–5016PubMedCentralPubMedGoogle Scholar
  31. 31.
    Kumar P, Patel SK, Lee J-K, Kalia VC (2013) Extending the limits of Bacillus for novel biotechnological applications. Biotechnol Adv 31:1543–1561. doi: 10.1016/j.biotechadv.2013.08.007 CrossRefPubMedGoogle Scholar
  32. 32.
    Kalia VC, Wood TK, Kumar P (2014) Evolution of resistance to quorum-sensing inhibitors. Microb Ecol 68:13–23. doi: 10.1007/s00248-013-0316-y PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Eckert R, Qi F, Yarbrough DK, He J, Anderson MH, Shi W (2006) Adding selectivity to antimicrobial peptides: rational design of a multidomain peptide against Pseudomonas spp. Antimicrob Agents Chemother 50:1480–1488. doi: 10.1128/AAC.50.4.1480-1488.2006 PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Bjarnsholt T, Givskov M (2008) Quorum sensing inhibitory drugs as next generation antimicrobials: worth the effort? Curr Infect Dis Rep 10:22–28. doi: 10.1007/s11908-008-0006-y CrossRefPubMedGoogle Scholar
  35. 35.
    Kalia VC, Kumar P (2015) Potential applications of quorum sensing inhibitors in diverse fields. In: Quorum sensing vs quorum quenching: a battle with no end in sight. Springer, pp. 359–370. doi: 10.1007/978-81-322-1982-8_29
  36. 36.
    Desai K, Mashburn-Warren L, Federle MJ, Morrison DA (2012) Development of competence for genetic transformation of Streptococcus mutans in a chemically defined medium. J Bacteriol 194:3774–3780. doi: 10.1128/JB.00337-12 PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Mashburn-Warren L, Morrison DA, Federle MJ (2010) A novel double-tryptophan peptide pheromone controls competence in Streptococcus spp. via an Rgg regulator. Mol Microbiol 78:589–606. doi: 10.1111/j.1365-2958.2010.07361.x PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Hasan S, Danishuddin M, Adil M, Singh K, Verma PK, Khan AU (2012) Efficacy of E. officinalis on the cariogenic properties of Streptococcus mutans: a novel and alternative approach to suppress quorum-sensing mechanism. PLoS ONE 7:e40319. doi: 10.1371/journal.pone.0040319 PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Perry JA, Cvitkovitch DG, Lévesque CM (2009) Cell death in Streptococcus mutans biofilms: a link between CSP and extracellular DNA. FEMS Microbiol Lett 299:261–266. doi: 10.1111/j.1574-6968.2009.01758.x PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Qi F, Kreth J, Lévesque CM, Kay O, Mair RW, Shi W, Cvitkovitch DG, Goodman SD (2005) Peptide pheromone induced cell death of Streptococcus mutans. FEMS Microbiol Lett 251:321–326. doi: 10.1016/j.femsle.2005.08.018 CrossRefPubMedGoogle Scholar
  41. 41.
    Wenderska IB, Lukenda N, Cordova M, Magarvey N, Cvitkovitch DG, Senadheera DB (2012) A novel function for the competence inducing peptide, XIP, as a cell death effector of Streptococcus mutans. FEMS Microbiol Lett 336:104–112. doi: 10.1111/j.1574-6968.2012.02660.x CrossRefPubMedGoogle Scholar
  42. 42.
    Yoshida A, Ansai T, Takehara T, Kuramitsu HK (2005) LuxS-based signaling affects Streptococcus mutans biofilm formation. Appl Environ Microbiol 71:2372–2380. doi: 10.1128/AEM.71.5.2372-2380.2005 PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Rickard AH, Palmer RJ, Blehert DS, Campagna SR, Semmelhack MF, Egland PG, Bassler BL, Kolenbrander PE (2006) Autoinducer 2: a concentration-dependent signal for mutualistic bacterial biofilm growth. Mol Microbiol 60:1446–1456. doi: 10.1111/j.1365-2958.2006.05202.x CrossRefPubMedGoogle Scholar
  44. 44.
    Merritt J, Qi F, Goodman SD, Anderson MH, Shi W (2003) Mutation of luxS affects biofilm formation in Streptococcus mutans. Infect Immun 71:1972–1979PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Chen P, Novak J, Qi F, Caufield PW (1998) Diacylglycerol kinase is involved in regulation of expression of the lantibiotic mutacin II of Streptococcus mutans. J Bacteriol 180:167–170PubMedCentralPubMedGoogle Scholar
  46. 46.
    McNab R, Ford SK, El-Sabaeny A, Barbieri B, Cook GS, Lamont RJ (2003) LuxS-based signaling in Streptococcus gordonii: autoinducer 2 controls carbohydrate metabolism and biofilm formation with Porphyromonas gingivalis. J Bacteriol 185:274–284. doi: 10.1128/JB.185.1.274-284.2003 PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    van der Ploeg JR (2005) Regulation of bacteriocin production in Streptococcus mutans by the quorum-sensing system required for development of genetic competence. J Bacteriol 187:3980–3989. doi: 10.1128/JB.187.12.3980-3989.2005 PubMedCentralCrossRefPubMedGoogle Scholar
  48. 48.
    Kreth J, Merritt J, Zhu L, Shi W, Qi F (2006) Cell density-and ComE-dependent expression of a group of mutacin and mutacin-like genes in Streptococcus mutans. FEMS Microbiol Lett 265:11–17. doi: 10.1111/j.1574-6968.2006.00459.x CrossRefPubMedGoogle Scholar
  49. 49.
    Kreth J, Hung DC, Merritt J, Perry J, Zhu L, Goodman SD, Cvitkovitch DG, Shi W, Qi F (2007) The response regulator ComE in Streptococcus mutans functions both as a transcription activator of mutacin production and repressor of CSP biosynthesis. Microbiology 153:1799–1807. doi: 10.1099/mic.0.2007/005975-0 PubMedCentralCrossRefPubMedGoogle Scholar
  50. 50.
    Li Y-H, Hanna MN, Svensäter G, Ellen RP, Cvitkovitch DG (2001) Cell density modulates acid adaptation in Streptococcus mutans: implications for survival in biofilms. J Bacteriol 183:6875–6884. doi: 10.1128/JB.183.23.6875-6884.2001 PubMedCentralCrossRefPubMedGoogle Scholar
  51. 51.
    Schertzer JW, Boulette ML, Whiteley M (2009) More than a signal: non-signaling properties of quorum sensing molecules. Trends Microbiol 17:189–195. doi: 10.1016/j.tim.2009.02.001 CrossRefPubMedGoogle Scholar
  52. 52.
    Kotake Y, Ishii S, Yano T, Katsuoka Y, Hayashi H (2008) Substrate recognition mechanism of the peptidase domain of the quorum-sensing-signal-producing ABC transporter ComA from Streptococcus. Biochemistry 47:2531–2538. doi: 10.1021/bi702253n CrossRefPubMedGoogle Scholar
  53. 53.
    Ishii S, Yano T, Okamoto A, Murakawa T, Hayashi H (2013) Boundary of the nucleotide-binding domain of Streptococcus ComA based on functional and structural analysis. Biochemistry 52:2545–2555. doi: 10.1021/bi3017069 CrossRefPubMedGoogle Scholar
  54. 54.
    Orelle C, Gubellini F, Durand A, Marco S, Lévy D, Gros P, Di Pietro A, Jault J-M (2008) Conformational change induced by ATP binding in the multidrug ATP-binding cassette transporter BmrA. Biochemistry 47:2404–2412. doi: 10.1021/bi702303s CrossRefPubMedGoogle Scholar
  55. 55.
    Leonard GD, Fojo T, Bates SE (2003) The role of ABC transporters in clinical practice. Oncologist 8:411–424. doi: 10.1634/theoncologist.8-5-411 CrossRefPubMedGoogle Scholar
  56. 56.
    Oancea G, O’Mara ML, Bennett WD, Tieleman DP, Abele R, Tampé R (2009) Structural arrangement of the transmission interface in the antigen ABC transport complex TAP. Proc Natl Acad Sci 106:5551–5556. doi: 10.1073/pnas.0811260106 PubMedCentralCrossRefPubMedGoogle Scholar
  57. 57.
    Ward A, Reyes CL, Yu J, Roth CB, Chang G (2007) Flexibility in the ABC transporter MsbA: alternating access with a twist. Proc Natl Acad Sci 104:19005–19010. doi: 10.1073/pnas.0709388104 PubMedCentralCrossRefPubMedGoogle Scholar
  58. 58.
    Aller SG, Yu J, Ward A, Weng Y, Chittaboina S, Zhuo R, Harrell PM, Trinh YT, Zhang Q, Urbatsch IL (2009) Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 323:1718–1722. doi: 10.1126/science.1168750 PubMedCentralCrossRefPubMedGoogle Scholar
  59. 59.
    Hohl M, Briand C, Grütter MG, Seeger MA (2012) Crystal structure of a heterodimeric ABC transporter in its inward-facing conformation. Nat Struct Mol Biol 19:395–402. doi: 10.1038/nsmb.2267 CrossRefPubMedGoogle Scholar
  60. 60.
    Pestova E, Håvarstein L, Morrison D (1996) Regulation of competence for genetic transformation in Streptococcus pneumoniae by an auto-induced peptide pheromone and a two-component regulatory system. Mol Microbiol 21:853–862. doi: 10.1046/j.1365-2958.1996.501417.x CrossRefPubMedGoogle Scholar
  61. 61.
    Lunsford RD, London J (1996) Natural genetic transformation in Streptococcus gordonii: comX imparts spontaneous competence on strain wicky. J Bacteriol 178:5831–5835PubMedCentralPubMedGoogle Scholar
  62. 62.
    Hillman J, Dzuback A, Andrews S (1987) Colonization of the human oral cavity by a Streptococcus mutans mutant producing increased bacteriocin. J Dent Res 66:1092–1094. doi: 10.1177/00220345870660060101 CrossRefPubMedGoogle Scholar
  63. 63.
    Opal SM (2007) Communal living by bacteria and the pathogenesis of urinary tract infections. PLoS Med 4:349. doi: 10.1371/journal.pmed.0040349 CrossRefGoogle Scholar
  64. 64.
    Cecil RL, Angevine DM (1938) Clinical and experimental observations on focal infection, with an analysis of 200 cases of rheumatoid arthritis. Ann Intern Med 12:577–584. doi: 10.7326/0003-4819-12-5-577 CrossRefGoogle Scholar
  65. 65.
    Higashi Y, Goto C, Jitsuiki D, Umemura T, Nishioka K, Hidaka T, Takemoto H, Nakamura S, Soga J, Chayama K (2008) Periodontal infection is associated with endothelial dysfunction in healthy subjects and hypertensive patients. Hypertension 51:446–453. doi: 10.1161/HYPERTENSIONAHA.107.101535 CrossRefPubMedGoogle Scholar
  66. 66.
    Otomo-Corgel J, Pucher JJ, Rethman MP, Reynolds MA (2012) State of the science: chronic periodontitis and systemic health. J Evid Based Dent Pract 12:20–28. doi: 10.1016/S1532-3382(12)70006-4 CrossRefPubMedGoogle Scholar
  67. 67.
    Janket S-J, Baird AE, Chuang S-K, Jones JA (2003) Meta-analysis of periodontal disease and risk of coronary heart disease and stroke. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 95:559–569. doi: 10.1067/moe.2003.107 CrossRefPubMedGoogle Scholar
  68. 68.
    Kaur G, Princy SA (2014) Reciprocal regulation of the periodontitis and diabetes. As Pac J Mol Biol Biotech 22:172–179Google Scholar
  69. 69.
    Persson GR (2012) Rheumatoid arthritis and periodontitis inflammatory and infectious connections. Review of the literature. J Oral Microbiol. doi: 10.3402/jom.v4i0.11829 Google Scholar
  70. 70.
    Hentzer M, Givskov M (2003) Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections. J Clin Invest 112:1300. doi: 10.1172/JCI200320074 PubMedCentralCrossRefPubMedGoogle Scholar
  71. 71.
    Arya R, Princy SA (2013) An insight into pleiotropic regulators Agr and Sar: molecular probes paving the new way for antivirulent therapy. Future Microbiol 8:1339–1353. doi: 10.2217/fmb.13.92 CrossRefPubMedGoogle Scholar
  72. 72.
    Arya R, Princy SA (2013) Computational approach to design small molecule inhibitors and identify SarA as a potential therapeutic candidate. Med Chem Res 22:1856–1865. doi: 10.1007/s00044-012-0185-9 CrossRefGoogle Scholar
  73. 73.
    Ravichandiran V, Shanmugam K, Princy SA (2013) Screening of SdiA inhibitors from Melia dubia seeds extracts towards the hold back of uropathogenic E. coli quorum sensing-regulated factors. Med Chem 9:819–827. doi: 10.2174/1573406411309060006 CrossRefPubMedGoogle Scholar
  74. 74.
    Wright JS, Jin R, Novick RP (2005) Transient interference with staphylococcal quorum sensing blocks abscess formation. Proc Natl Acad Sci U S A 102:1691–1696. doi: 10.1073/pnas.0407661102 PubMedCentralCrossRefPubMedGoogle Scholar
  75. 75.
    Hema M, Balasubramanian S, Princy SA (2015) Meddling Vibrio cholerae murmurs: a neoteric advancement in cholera research. Indian J Microbiol 55:121–130. doi: 10.1007/s12088-015-0520-1 CrossRefPubMedGoogle Scholar
  76. 76.
    Arya R, Ravikumar R, Santhosh RS, Princy S (2015) SarA based novel therapeutic candidate against Staphylococcus aureus associated with vascular graft infections. Front Microbiol 6:416. doi: 10.3389/fmicb.2015.00416 PubMedCentralPubMedGoogle Scholar
  77. 77.
    Kalia VC, Kumar P, Pandian SK, Sharma P (2015) Biofouling control by quorum quenching. In: Kim S-K (ed) Hb25_Springer Handbook of Marine Biotechnology. Springer Berlin Heidelberg, pp. 431–440. doi: 10.1007/978-3-642-53971-8_15
  78. 78.
    Stewart PS, William Costerton J (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138. doi: 10.1016/S0140-6736(01)05321-1 CrossRefPubMedGoogle Scholar
  79. 79.
    Turovskiy Y, Kashtanov D, Paskhover B, Chikindas ML (2007) Quorum sensing: fact, fiction, and everything in between. Adv Appl Microbiol 62:191. doi: 10.1016/S0065-2164(07)62007-3 PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Association of Microbiologists of India 2015

Authors and Affiliations

  • Gurmeet Kaur
    • 1
  • Shrinidhi Rajesh
    • 1
  • S. Adline Princy
    • 1
    Email author
  1. 1.Quorum Sensing Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and BiotechnologySASTRA UniversityThanjavurIndia

Personalised recommendations