Indian Journal of Microbiology

, Volume 55, Issue 3, pp 292–301 | Cite as

Fermentative Production of Pyranone Derivate I from Marine Vibrio sp. SKMARSP9: Isolation, Characterization and Bioactivity Evaluation

  • P. Shiva Krishna
  • B. Sudheer Kumar
  • P. Raju
  • M. S. R. Murty
  • T. Prabhakar Rao
  • M. A. Singara Charya
  • R. S. Prakasham
Original Article


Pyranone derivative I was isolated from fermented broth of isolated marine bacterial strain Vibrio sp. SKMARSP9. The compound I was characterized, and evaluated for its antimicrobial properties. The isolated strain was identified based on 16S rRNA based phylogenetic analysis. The molecular analysis data suggested that this strain is closely related to Vibrio ruber, Vibrio sp. MSSRF10 and Vibrio rhizosphaerae. The best fermentative growth of this isolate was achieved under halophilic conditions and grew efficiently at 30 °C in the presence of 12 % NaCl. The compound I production by this strain is associated with growth. The unpurified extract is hydrophobic in nature, and released only during late growth phase. The extract was purified and characterized by spectral data using NMR, DEPT, and ESI–MS. The purity of I was 97 % which was confirmed by HPLC. The pyranone derivative I exhibited >50 % antioxidant activity and broad spectrum antimicrobial properties against gram negative and gram positive strains. Molecular docking analysis revealed that this pyranone derivative I may be a potential candidate at pharmaceutical sector.


Pyranone derivative Antioxidant activity Antibacterial activity NMR ESI–MS 



The authors B. Sudheer Kumar and P. Raju were thankful to CSIR for financial support as Senior Research Fellowship. The authors were thankful to Ingo Morgenstern, Centre for Structural Functional Genomics, Concordia University.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

12088_2015_521_MOESM1_ESM.pdf (710 kb)
Supplementary material 1 (PDF 709 kb)


  1. 1.
    Anand TP, Bhat AW, Shouche YS, Roy U, Siddharth J, Sarma SP (2006) Antimicrobial activity of marine bacteria associated with sponges from the waters of the coast of South East India. Microbiol Res 161:252–262. doi: 10.1016/j.micres.2005.09.002 PubMedCrossRefGoogle Scholar
  2. 2.
    Donia M, Humann MT (2003) Marine natural products and their potential applications as anti infective agents. Lancet Infect Dis 3:338–348. doi: 10.1016/S1473-3099(03)00655-8 PubMedCrossRefGoogle Scholar
  3. 3.
    Venil CK, Lakshmanaperumalsamy P (2009) An insightful overview on microbial pigment, prodigiosin. Electron J Biol 5:49–61. doi: 10.5053/ejobios.2010 Google Scholar
  4. 4.
    Katoh K, Toh H (2008) Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 9:286–298. doi: 10.1093/bib/bbn013 PubMedCrossRefGoogle Scholar
  5. 5.
    Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066. doi: 10.1093/nar/gkf436 PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690. doi: 10.1093/bioinformatics/btl446 PubMedCrossRefGoogle Scholar
  7. 7.
    Slater H, Crow M, Everson L, Salmond GP (2003) Phosphate availability regulates biosynthesis of two antibiotics, prodigiosin and carbapenem in Serratia via both quorum sensing-dependent and independent pathway. Mol Microbiol 47:303–320. doi: 10.1046/j.1365-2958.2003.03295.x PubMedCrossRefGoogle Scholar
  8. 8.
    Ebrahimzadeh MA, Bahramian F (2009) Antioxidant activity of Crataegus pentaegyna subsp. Elburensis fruits extracts used in traditional medicine in Iran. Pak J Biol Sci 12:413–419. doi: 10.3923/pjbs.2009.413.419 PubMedCrossRefGoogle Scholar
  9. 9.
    Hetenyi C, Spoel D (2002) Efficient docking of peptides to proteins without prior knowledge of the binding site. Protein Sci 11:1729–1737. doi: 10.1110/ps.0202302 PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Uzair B, Ahmed N, Ahmed V, Kousar F (2006) A new antibacterial compound produced by indigenous marine bacteria—fermentation, isolation and biological activity. Nat Prod Res 20:1326–1331. doi: 10.1080/14786410601102017 PubMedCrossRefGoogle Scholar
  11. 11.
    Li B, Yu R, Liu B, Tang Q, Zhang G, Wang Y, Xie G, Sun G (2011) Characterization and comparison of Serratia marcescens isolated from edible cactus and from silk worm for virulence potential and chitosan susceptibility. Braz J Microbiol 42:96–104. doi: 10.1590/S1517-83822011000100013 PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Sundaramoorthy N, Yogesh P, Dhandapani R (2009) Production of prodigiosin from Serratia marcescens isolated from soil. Indian J Sci Technol 2:32–34. doi: 10.17485/ijst/2009/v2i10/30715 Google Scholar
  13. 13.
    Kita-Tsukamoto K, Oyaizu H, Nanba K, Simidu U (1993) Phylogenetic relationships of marine bacteria, mainly members of the family Vibrionaceae, determined on the basis of 16S rRNA sequences. Int J Syst Bacteriol 43:8–19. doi: 10.1099/00207713-43-1-8 PubMedCrossRefGoogle Scholar
  14. 14.
    Kim MK, Jung HY (2007) Chitinophaga terrae sp. nov., isolated from soil. Int J Syst Evol Microbiol 57:1721–1724. doi: 10.1099/ijs.0.64964-0 PubMedCrossRefGoogle Scholar
  15. 15.
    Soliev AB, Kakushi Hosokawa K, Enomoto K (2011) Bioactive pigments from marine bacteria: applications and physiological roles. Evid Based Complement Altern Med 2011:1–17. doi: 10.1155/2011/670349 CrossRefGoogle Scholar
  16. 16.
    Buddana SK, Yaswanth VNV, Prakasham RS (2015) Fibrinolytic, anti-inflammatory and anti-microbial properties of α-(1-3)-glucans produced from Streptococcus mutans (MTCC 497). Carbohydr Polym 115:152–159. doi: 10.1016/j.carbpol.2014.08.083 PubMedCrossRefGoogle Scholar
  17. 17.
    Mensor LL, Meneze FS, Leitao GG (2001) Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytother Res 15:127–130. doi: 10.1002/ptr.687 PubMedCrossRefGoogle Scholar
  18. 18.
    Hell AJ, Crommelin DJ, Hennink WE, Mastrobattista E (2009) Stabilization of peptide vesicles by introducing inter-peptide disulfide bonds. Pharm Res 26:2186–2193. doi: 10.1007/s11095-009-9933-z PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Hoffmann M, Monday SR, Fischer M, Brown W (2012) Genetic and phylogenetic evidence for misidentification of Vibrio species within the Harveyi clade. Lett Appl Microbiol 54:160–165. doi: 10.1111/j.1472-765X.2011.03183.x PubMedCrossRefGoogle Scholar
  20. 20.
    Thompson CC, Thompson FL, Vandemeulebroecke K, Hoste B, Dawyndt P, Swings J (2004) Use of recA as an alternative phylogenetic marker in the family Vibrionaceae. Int J Syst Evol Microbiol 54:919–924. doi: 10.1099/ijs.0.02963-0 PubMedCrossRefGoogle Scholar
  21. 21.
    Thompson CC, Thompson FL, Vicente AC, Swings J (2007) Phylogenetic analysis of Vibrios and related species by means of atpA gene sequences. Int J Syst Evol Microbiol 57:2480–2484. doi: 10.1099/ijs.0.65223-0 PubMedCrossRefGoogle Scholar
  22. 22.
    Thompson FL, Gevers D, Thompson CC, Dawyndt P, Naser S, Hoste B, Munn CB, Swings J (2005) Phylogeny and molecular identification of vibrios on the basis of multilocus sequence analysis. Appl Environ Microbiol 71:5107–5115. doi: 10.1128/AEM.71.9.5107-5115.2005 PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Trutko S, Dorofeeva L, Evtushenko L, Ostrovskii D, Hintz M, Wiesner J, Jomaa H, Baskunov B, Akimenko V (2005) Isoprenoid pigments in representatives of the family Microbacteriaceae. Microbiology 74:284–289. doi: 10.1007/s11021-005-0064-1 CrossRefGoogle Scholar
  24. 24.
    Pascual J, Macián MC, Arahal DR, Garay E, Pujalte MJ (2010) Multilocus sequence analysis of the central clade of the genus Vibrio by using the 16S rRNA, recA, pyrH, rpoD, gyrB, rctB and toxR genes. Int J Syst Evol Microbiol 60:154–165. doi: 10.1099/ijs.0.010702-0 PubMedCrossRefGoogle Scholar
  25. 25.
    Ruwandeepika HAD, Jayaweera TSP, Bhowmick PP, Karunasagar I, Bossier P, Defoirdt T (2012) Pathogenesis, virulence factors and virulence regulation of Vibrios belonging to the Harveyi clade. Rev Aquac 4:59–74. doi: 10.1111/j.1753-5131.2012.01061.x CrossRefGoogle Scholar

Copyright information

© Association of Microbiologists of India 2015

Authors and Affiliations

  • P. Shiva Krishna
    • 1
  • B. Sudheer Kumar
    • 4
  • P. Raju
    • 2
  • M. S. R. Murty
    • 2
  • T. Prabhakar Rao
    • 3
  • M. A. Singara Charya
    • 1
  • R. S. Prakasham
    • 4
  1. 1.Department of MicrobiologyKakatiya UniversityWarangalIndia
  2. 2.Medicinal Chemistry & PharmacologyCSIR - Indian Institute of Chemical TechnologyHyderabadIndia
  3. 3.Centre for NMR & Structural ChemistryCSIR - Indian Institute of Chemical TechnologyHyderabadIndia
  4. 4.Bio Engineering & Environmental SciencesCSIR - Indian Institute of Chemical TechnologyHyderabadIndia

Personalised recommendations