Advertisement

Indian Journal of Microbiology

, Volume 54, Issue 1, pp 46–51 | Cite as

Prokaryotic Expression, Identification and Bioinformatics Analysis of the Mycobacterium tuberculosis Rv3807c Gene Encoding the Putative Enzyme Committed to Decaprenylphosphoryl-d-arabinose Synthesis

  • Lina Cai
  • Xiaojiao Zhao
  • Tao Jiang
  • Juanjuan Qiu
  • Lawrence Owusu
  • Yufang Ma
  • Bo Wang
  • Yi Xin
Original Article

Abstract

Decaprenylphosphoryl-d-arabinofuranosyl (DPA), the immediate donor for the polymerized d-Araf residues of mycobacterial arabinan, is synthesized from 5-phosphoribose-1-diphosphate (PRPP) in three-step reactions. (i) PRPP is transferred to decaprenyl-phosphate (DP) to form decaprenylphosphoryl-d-5-phosphoribose (DPPR). (ii) DPPR is dephosphorylated to form decaprenylphosphoryl-d-ribose (DPR). (iii) DPR is formed to DPA by the epimerase. Mycobacterium tuberculosis Rv3806c and heteromeric Rv3790/Rv3791 have been identified as the PRPP: decaprenyl-phosphate 5-phosphoribosyltransferase and the epimerase respectively. Rv3807c, however, as the candidate of phospholipid phosphatase, catalyzing the biosynthesis of decapreny-l-phosphoryl-ribose (DPR) from decaprenylphosphoryl-β-d-5-phosphoribose by dephosphorylating, has no direct experimental evidence of its essentiality in any species of mycobacterium. In this study, Rv3807c gene was amplified from the genome of M. tuberculosis H37Rv by PCR, and was successfully expressed in Escherichia coli BL21 (DE3) via the recombinant plasmid pColdII-Rv3807c. The resulting protein with the 6× His-tag was identified by SDS-PAGE and Western blotting. The protein was predicted through bioinformatics to contain three transmembrane domains, the N-terminal peptide, and a core structure with phosphatidic acid phosphatase type2/haloperoxidase. This study provides biochemical and bioinformatics evidence for the importance of Rv3807c in mycobacteria, and further functional studies will be conducted for validating Rv3807c as a promising phospholipid phosphatase in the synthetic pathway of DPA.

Keywords

Mycobacterium tuberculosis Rv3807c Decaprenylphosphoryl-d-arabinose (DPA) 

Abbreviation

BCIP

5-Bromo-4-chloro-3-indolylphosphate

DP

Decaprenyl-phosphate

DPA

Decaprenyl-phospho-d-arabinose

DPPR

Decaprenylphosphoryl-d-5-phosphoribose

DPR

Decaprenylphosphoryl-d-ribose

NBT

Nitroblue tetrazolium

Ni-NTA

Ni-nitrilotriacetic acid

EDTA

Ethylenediaminetetraacetic acid

PAGE

Polyacrylamide gel electrophoresis

PRPP

5-Phosphoribose-1-diphosphate

SDS

Sodium dodecyl sulfate

Notes

Acknowledgments

This study is supported by the grants from National Natural Science Foundation of China (30970647).

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Brennan PJ (2003) Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis. Tuberculosis (Edinb) 83(1–3):91–97CrossRefGoogle Scholar
  2. 2.
    Crick DC, Schulbach MC, Zink EE, Macchia M, Barontini S, Besra GS et al (2000) Polyprenyl phosphate biosynthesis in Mycobacterium tuberculosis and Mycobacterium smegmatis. J Bacteriol 182(20):5771–5778PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Crick DC, Mahapatra S, Brennan PJ (2001) Biosynthesis of the arabinogalactan–peptidoglycan complex of Mycobacterium tuberculosis. Glycobiology 11(9):107R–118RPubMedCrossRefGoogle Scholar
  4. 4.
    Scherman M, Weston A, Duncan K, Whittington A, Upton R, Deng L et al (1995) Biosynthetic origin of mycobacterial cell wall arabinosyl residues. J Bacteriol 177(24):7125–7130PubMedCentralPubMedGoogle Scholar
  5. 5.
    Wolucka BA, McNeil MR, de Hoffmann E, Chojnacki T, Brennan PJ (1994) Recognition of the lipid intermediate for arabinogalactan/arabinomannan biosynthesis and its relation to the mode of action of ethambutol on mycobacteria. J Biol Chem 269(37):23328–23335PubMedGoogle Scholar
  6. 6.
    Crellin PK, Brammananth R, Coppel RL (2011) Decaprenylphosphoryl-beta-d-ribose 2′-epimerase, the target of benzothiazinones and dinitrobenzamides, is an essential enzyme in Mycobacterium smegmatis. PLoS One 6(2):e16869. doi: 10.1371/journal.pone.0016869 PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Horita Y, Takii T, Kuroishi R, Chiba T, Ogawa K, Kremer L et al (2011) Synthesis and evaluation of anti-tubercular activity of new dithiocarbamate sugar derivatives. Bioorg Med Chem Lett 21(3):899–903. doi: 10.1016/j.bmcl.2010.12.084 PubMedCrossRefGoogle Scholar
  8. 8.
    Buroni S, Pasca MR, de Jesus Lopes Ribeiro AL, Degiacomi G, Molteni E, Riccardi G (2012) Antituberculars which target decaprenylphosphoryl-β-d-ribofuranose 2′-oxidase DprE1: state of art. Appl Microbiol Biotechnol 94(4):907–916. doi: 10.1007/s00253-012-4013-4 PubMedCrossRefGoogle Scholar
  9. 9.
    Huang H, Scherman MS, D’Haeze W, Vereecke D, Holsters M, Crick DC et al (2005) Identification and active expression of the Mycobacterium tuberculosis gene encoding 5-phospho-α-d-ribose-1-diphosphate: decaprenyl-phosphate 5-phosphoribosyltransferase, the first enzyme committed to decaprenylphosphoryl-d-arabinose synthesis. J Biol Chem 280(26):24539–24543. doi: 10.1074/jbc.M504068200 PubMedCrossRefGoogle Scholar
  10. 10.
    Jiang T, He L, Zhan Y, Zang S, Ma Y, Zhao X et al (2011) The effect of MSMEG_6402 gene disruption on the cell wall structure of Mycobacterium smegmatis. Microb Pathog 51(3):156–160. doi: 10.1016/j.micpath.2011.04.005 PubMedCrossRefGoogle Scholar
  11. 11.
    Wolucka BA (2008) Biosynthesis of d-arabinose in mycobacteria—a novel bacterial pathway with implications for antimycobacterial therapy. FEBS J 275(11):2691–2711. doi: 10.1111/j.1742-4658.2008.06395.x PubMedCrossRefGoogle Scholar
  12. 12.
    Mikusova K, Huang H, Yagi T, Holsters M, Vereecke D, D’Haeze W et al (2005) Decaprenylphosphoryl arabinofuranose, the donor of the d-arabinofuranosyl residues of mycobacterial arabinan, is formed via a two-step epimerization of decaprenylphosphoryl ribose. J Bacteriol 187(23):8020–8025. doi: 10.1128/JB.187.23.8020-8025.2005 PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Eoh H, Brown AC, Buetow L, Hunter WN, Parish T, Kaur D et al (2007) Characterization of the Mycobacterium tuberculosis 4-diphosphocytidyl-2-C-methyl-d-erythritol synthase: potential for drug development. J Bacteriol 189(24):8922–8927. doi: 10.1128/JB.00925-07 PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Sassetti CM, Boyd DH, Rubin EJ (2003) Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48(1):77–84PubMedCrossRefGoogle Scholar
  15. 15.
    Slayden RA, Jackson M, Zucker J, Ramirez MV, Dawson CC, Crew R et al (2013) Updating and curating metabolic pathways of TB. Tuberculosis (Edinb) 93(1):47–59. doi: 10.1016/j.tube.2012.11.001 CrossRefGoogle Scholar
  16. 16.
    Carman GM, Han GS (2006) Roles of phosphatidate phosphatase enzymes in lipid metabolism. Trends Biochem Sci 31(12):694–699. doi: 10.1016/j.tibs.2006.10.003 PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Dong X, Bhamidi S, Scherman M, Xin Y, McNeil MR (2006) Development of a quantitative assay for mycobacterial endogenous arabinase and ensuing studies of arabinase levels and arabinan metabolism in Mycobacterium smegmatis. Appl Environ Microbiol 72(4):2601–2605. doi: 10.1128/AEM.72.4.2601-2605.2006 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Association of Microbiologists of India 2013

Authors and Affiliations

  • Lina Cai
    • 1
  • Xiaojiao Zhao
    • 2
  • Tao Jiang
    • 1
  • Juanjuan Qiu
    • 1
  • Lawrence Owusu
    • 1
  • Yufang Ma
    • 3
  • Bo Wang
    • 4
  • Yi Xin
    • 1
  1. 1.Department of BiotechnologyDalian Medical UniversityDalianPeople’s Republic of China
  2. 2.TB Laboratory of Shenyang Chest HospitalShenyangPeople’s Republic of China
  3. 3.Department of Biochemistry and Molecular BiologyDalian Medical UniversityDalianPeople’s Republic of China
  4. 4.Department of PathologyDalian Medical UniversityDalianPeople’s Republic of China

Personalised recommendations