Indian Journal of Microbiology

, Volume 53, Issue 4, pp 377–384 | Cite as

Acetic Acid Bacteria: Physiology and Carbon Sources Oxidation

  • Dhouha Mamlouk
  • Maria GulloEmail author
Review Article


Acetic acid bacteria (AAB) are obligately aerobic bacteria within the family Acetobacteraceae, widespread in sugary, acidic and alcoholic niches. They are known for their ability to partially oxidise a variety of carbohydrates and to release the corresponding metabolites (aldehydes, ketones and organic acids) into the media. Since a long time they are used to perform specific oxidation reactions through processes called “oxidative fermentations”, especially in vinegar production. In the last decades physiology of AAB have been widely studied because of their role in food production, where they act as beneficial or spoiling organisms, and in biotechnological industry, where their oxidation machinery is exploited to produce a number of compounds such as l-ascorbic acid, dihydroxyacetone, gluconic acid and cellulose. The present review aims to provide an overview of AAB physiology focusing carbon sources oxidation and main products of their metabolism.


Acetic acid bacteria Oxidative fermentation Cellulose Acetobacter Gluconacetobacter Gluconobacter oxydans 


  1. 1.
    Sievers M, Swings J (2005) Family Acetobacteraceae. In: Garrity GM (ed) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, New York, pp 41–95Google Scholar
  2. 2.
    Wu J, Gullo M, Chen F, Giudici P (2010) Diversity of Acetobacter pasteurianus strains isolated from solid-state fermentation of cereal vinegars. Curr Microbiol 60:280–286PubMedCrossRefGoogle Scholar
  3. 3.
    Mamlouk D, Hidalgo C, Torija MJ, Gullo M (2011) Evaluation and optimization of bacterial genomic DNA extraction for no-culture techniques applied to vinegars. Food Microbiol 28:1374–1379PubMedCrossRefGoogle Scholar
  4. 4.
    Gullo M, Giudici P (2008) Acetic acid bacteria in traditional balsamic vinegar: phenotypic traits relevant for starter cultures selection. Int J Food Microbiol 125(1):46–53PubMedCrossRefGoogle Scholar
  5. 5.
    Pedraza RO (2008) Recent advances in nitrogen-fixing acetic acid bacteria. Int J Food Microbiol 125(1):25–35PubMedCrossRefGoogle Scholar
  6. 6.
    Kim EK, Kim SH, Nam HJ, Choi MK, Lee KA, Choi SH, Seo YY, You H, Kim B, Lee WJ (2012) Draft genome sequence of Gluconobacter morbifer G707T, a pathogenic gut bacterium isolated from Drosophila melanogaster intestine. J Bacteriol 194(5):1245PubMedCrossRefGoogle Scholar
  7. 7.
    Adachi O, Moonmangmee D, Toyama H, Yamada M, Shinagawa E, Matsushita K (2003) New developments in oxidative fermentation. Appl Microbiol Biotechnol 60(6):643–653PubMedGoogle Scholar
  8. 8.
    Kersters K, Lisdiyanti P, Komagata K, Swings J (2006) The family Acetobacteraceae: the genera Acetobacter, Acidomonas, Asaia, Gluconacetobacter, Gluconobacter and Kozakia. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes, 3rd edn. Springer, New York, pp 163–200CrossRefGoogle Scholar
  9. 9.
    Pasteur L (1864) Mémoire sur la fermentation acétique. Annales Scientifiques de l’E.N.S Paris 1:113–158Google Scholar
  10. 10.
    Swings J, De Ley J (1977) The biology of Zymomonas. Bacteriol Rev 41:1–46PubMedGoogle Scholar
  11. 11.
    Camu N, De Winter T, Verbrugghe K, Cleenwerck I, Vandamme P, Takrama JS, Vancanneyt M, De Vuyst L (2007) Dynamics and biodiversity of populations of lactic acid bacteria and acetic acid bacteria involved in spontaneous heap fermentation of cocoa beans in Ghana. Appl Environ Microbiol 73(6):1809–1824PubMedCrossRefGoogle Scholar
  12. 12.
    Bartowsky EJ, Henschke PA (2008) Acetic acid bacteria spoilage of bottled red wine-a review. Int J Food Microbiol 125(1):60–70PubMedCrossRefGoogle Scholar
  13. 13.
    Gullo M, Romano AD, Pulvirenti A, Giudici P (2003) Candida humilis-dominant species in sourdoughs for the production of durum wheat bran flour bread. Int J Food Microbiol 80(1):55–59PubMedCrossRefGoogle Scholar
  14. 14.
    Greenfield S, Claus GW (1972) Nonfunctional tricarboxylic acid cycle and the mechanism of glutamate biosynthesis in Acetobacter suboxydans. J Bacteriol 112:1295–1301PubMedGoogle Scholar
  15. 15.
    Gupta A, Singh VK, Qazi GN, Kumar A (2001) Gluconobacter oxydans: its biotechnological applications. J Mol Microbiol Biotechnol 3(3):445–456PubMedGoogle Scholar
  16. 16.
    De Vero L, Gullo M, Giudici P (2010) Acetic acid bacteria, biotechnological applications. In: Flickinger MC (ed) Encyclopedia of industrial biotechnology: bioprocess bioseparation and cell technology. Wiley, New York, pp 9–25Google Scholar
  17. 17.
    Singh OV, Kumar R (2007) Biotechnological production of gluconic acid: future implications. Appl Microbiol Biotechnol 75(4):713–772PubMedCrossRefGoogle Scholar
  18. 18.
    Czaja W, Young D, Kawecki M, Brown RM (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8:1–12PubMedCrossRefGoogle Scholar
  19. 19.
    Saeki A, Theeragol G, Matsushita K, Toyama H, Lotong N, Adachi O (1997) Development of thermotolerant acetic acid bacteria useful for vinegar fermentation at higher temperatures. Biosci Biotechnol Biochem 61:138–145CrossRefGoogle Scholar
  20. 20.
    Ndoye B, Lebecque S, Dubois-Dauphin R, Tounkara L, Guiro AT, Kere C, Diawara B, Thonart P (2006) Thermoresistant properties of acetic acids bacteria isolated from tropical products of Sub-Saharan Africa and destined to industrial vinegar. Enzyme Microb Technol 39:916–923CrossRefGoogle Scholar
  21. 21.
    De Ley J, Gillis M, Swings J (1984) Family VI. Acetobacteraceae. In: Krieg NR, Holt JG. (eds.) Bergey’s manual of systematic bacteriology, baltimore, pp 267–278Google Scholar
  22. 22.
    Euzéby JP (1997) List of bacterial names with standing in nomenclature: a folder available on the internet. Int J Syst Bacteriol 47:590–592 (List of prokaryotic names with standing in nomenclature).
  23. 23.
    Ludwig W (2008) Nucleic acid techniques in bacterial systematics and identification. Int J Food Microbiol 125:1–12CrossRefGoogle Scholar
  24. 24.
    Cleenwerck I, de Vos P (2008) Polyphasic taxonomy of acetic acid bacteria: an overview of the currently applied methodology. Int J Food Microbiol 125(1):2–14PubMedCrossRefGoogle Scholar
  25. 25.
    Gullo M, Mamlouk D, De Vero L, Giudici P (2012) Acetobacter pasteurianus strain AB0220: cultivability and phenotypic stability over 9 years of preservation. Curr Microbiol 64:576–580PubMedCrossRefGoogle Scholar
  26. 26.
    Kondo K, Horinouchi S (1997) Characterization of the genes encoding the three-component membrane-bound alcohol dehydrogenase from Gluconobacter suboxydans and their expression in Acetobacter pasteurianus. Appl Environ Microbiol 63:1131–1138PubMedGoogle Scholar
  27. 27.
    Azuma Y, Hosoyama A, Matsutani M, Furuya N, Horikawa H, Harada T, Hirakawa H, Kuhara S, Matsushita K, Fujita N, Shirai M (2009) Whole-genome analyses reveal genetic instability of Acetobacter pasteurianus. Nucleic Acids Res 37(17):5768–5783PubMedCrossRefGoogle Scholar
  28. 28.
    Coucheron DH (1991) An Acetobacter xylinum insertion sequence element associated with inactivation of cellulose production. J Bacteriol 173:5723–5731PubMedGoogle Scholar
  29. 29.
    Cleenwerck I, De Vos P, De Vuyst L (2010) Phylogeny and differentiation of species of the genus Gluconacetobacter and related taxa based on multilocus sequence analyses of housekeeping genes and reclassification of Acetobacter xylinus subsp. sucrofermentans as Gluconacetobacter sucrofermentans (Toyosaki et al. 1996) sp. nov., comb. nov. Int J Syst Evol Microbiol 60(10):2277–2283PubMedCrossRefGoogle Scholar
  30. 30.
    Matsutani M, Hirakawa H, Yakushi T, Matsushita K (2011) Genome-wide phylogenetic analysis of Gluconobacter, Acetobacter, and Gluconacetobacter. FEMS Microbiol Lett 315(2):122–1228PubMedCrossRefGoogle Scholar
  31. 31.
    Kittelman M, Stamm WW, Follmann H, Truper HG (1989) Isolation and classification of acetic acid bacteria from high percentage vinegar fermentations. Appl Bicrobiol Biotechnol 30:47–52Google Scholar
  32. 32.
    Millet V, Lonvaud-Funel A (2000) The viable but non-culturable state of wine microorganisms during storage. Lett Appl Microbiol 30:136–141PubMedCrossRefGoogle Scholar
  33. 33.
    De Vero L, Gala E, Gullo M, Solieri L, Landi S, Giudici P (2006) Application of denaturing gradient gel electrophoresis (DGGE) analysis to evaluate acetic acid bacteria in traditional balsamic vinegar. Food Microbiol 23(8):809–813PubMedCrossRefGoogle Scholar
  34. 34.
    Gullo M, De Vero L, Giudici P (2009) Succession of selected strains of Acetobacter pasteurianus and other acetic acid bacteria in traditional balsamic vinegar. Appl Environ Microbiol 75:2585–2589PubMedCrossRefGoogle Scholar
  35. 35.
    Dupuy P (1952) Recherche d’une technique d’isolement des Acetobacter du vin. Ann Technol Agric 1:107–112Google Scholar
  36. 36.
    Drysdale GS, Fleet GH (1988) Acetic acid bacteria in winemaking: a review. Am J Enol Vitic 39(2):143–154Google Scholar
  37. 37.
    Carr JG, Passmore SM (1979) Methods for identifying acetic acid bacteria. In: Skinner FA, Lovelock DW (eds) Identification methods for microbiologists. Academic Press, UK, pp 33–47Google Scholar
  38. 38.
    Sievers M, Sellmer S, Teuber M (1992) Acetobacter europaeus sp. nov., a main component of industrial vinegar fermenters in central Europe. Syst Appl Microbiol 15:386–392CrossRefGoogle Scholar
  39. 39.
    Entani E, Ohmori S, Masai H, Suzuki KI (1985) Acetobacter polyoxogenes sp. nov., a new species of an acetic acid bacterium useful for producing vinegar with high acidity. J Gen Appl Microbiol 31:475–490CrossRefGoogle Scholar
  40. 40.
    Sokollek SJ, Hertel C, Hammes WP (1998) Cultivation and preservation of vinegar bacteria. J Biotechnol 60:195–206CrossRefGoogle Scholar
  41. 41.
    Gullo M, Caggia C, De Vero L, Giudici P (2006) Characterization of acetic acid bacteria in traditional balsamic vinegar. Int J Food Microbiol 106:209–212PubMedCrossRefGoogle Scholar
  42. 42.
    Matsushita K, Toyama H, Adachi O (2004) Respiratory chains in acetic acid bacteria: membrane bound periplasmic sugar and alcohol respirations. In: Zannoni D (ed) Respiration in archaea and bacteria, advances in photosynthesis and respiration. Springer, Dordrecht, pp 81–99CrossRefGoogle Scholar
  43. 43.
    Anthony C (1996) Quinoprotein-catalysed reactions. Biochem J 320:697–711PubMedGoogle Scholar
  44. 44.
    Goodwin PM, Anthony C (1998) The biochemistry, physiology and genetics of PQQ and PQQ-containing enzymes. Adv Microb Physiol 40:1–80PubMedCrossRefGoogle Scholar
  45. 45.
    Yakushi T, Matsushita K (2010) Alcohol dehydrogenase of acetic acid bacteria: structure, mode of action, and applications in biotechnology. Appl Microbiol Biotechnol 86(5):1257–1265PubMedCrossRefGoogle Scholar
  46. 46.
    Adachi O, Matsushita K, Shinagawa E, Ameyama M (1980) Crystallization and properties of NADP-dependent d-glucose dehydrogenase from Gluconobacter suboxydans. Agric Biol Chem 44:301–308CrossRefGoogle Scholar
  47. 47.
    Muraoka H, Watabe Y, Ogasawara N, Takahashi H (1983) Trigger damage by oxygen deficiency to the acid production system during submerged acetic acid fermentation with Acetobacter aceti. J Ferment Technol 61:89–93Google Scholar
  48. 48.
    De Ley J, Gillis M, Swings J (1984) Family VI. Acetobacteraceae. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology, 1st edn. Williams and Wilkins Co, Baltimore, pp 267–278Google Scholar
  49. 49.
    White GA, Wang CH (1964) The dissimilation of glucose and gluconate by Acetobacter xylinum. The origin and the fate of triose phosphate. Biochem J 90(2):408–423PubMedGoogle Scholar
  50. 50.
    Deppenmeier U, Ehrenreich A (2009) Physiology of acetic acid bacteria in light of the genome sequence of Gluconobacter oxydans. J Mol Microbiol Biotechnol 16:69–80PubMedCrossRefGoogle Scholar
  51. 51.
    Attwood M, van Dijken JP, Pronk JT (1991) Glucose metabolism and gluconic acid production by Acetobacter diazotrophicus. J Ferment Bioeng 72(2):101–105CrossRefGoogle Scholar
  52. 52.
    Klasen R, Bringer-Meyer S, Sahm H (1995) Biochemical characterization and sequence analysis of the gluconate: NADP 5-oxidoreductase gene from Gluconobacter oxydans. J Bacteriol 177(10):2637–2643PubMedGoogle Scholar
  53. 53.
    Roehr M, Kubicek CP, Kominek J (1996) Gluconic acid. In: Roehr M (ed) Biotechnology, vol 2. VCH, New York, pp 348–362Google Scholar
  54. 54.
    Prust C, Hoffmeister M, Liesegang H, Wiezer A, Fricke WF, Ehrenreich A, Gottschalk G, Deppenmeier U (2005) Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans. Nat Biotechonol 23:195–200CrossRefGoogle Scholar
  55. 55.
    Ross P, Mayer R, Benziman M (1991) Cellulose biosynthesis and function in bacteria. Microbiol Mol Biol Rev 55:135–158Google Scholar
  56. 56.
    Yukphan P, Malimas T, Muramatsu Y, Potacharoen W, Tanasupawat S, Nakagawa Y, Tanticharoen M, Yamada Y (2011) Neokomagataea gen. nov., with descriptions of Neokomagataea thailandica sp. nov. and Neokomagataea tanensis sp. nov., osmotolerant acetic acid bacterium of the a Proteobacteria. Biosci Biotechnol Biochem 75(3):419–426PubMedCrossRefGoogle Scholar
  57. 57.
    Yukphan P, Malimas T, Muramatsu Y, Takahashi M, Kaneyasu M, Potacharoen W, Tanasupawat S, Nakagawa Y, Hamana K, Tahara Y, Suzuki K, Tanticharoen M, Yamada Y (2009) Ameyamaea chiangmaiensis gen. nov., sp. nov., an acetic acid bacterium in the alpha proteobacteria. Biosci Biotechnol Biochem 73(10):2156–2162PubMedCrossRefGoogle Scholar

Copyright information

© Association of Microbiologists of India 2013

Authors and Affiliations

  1. 1.Department of Life SciencesUniversity of Modena and Reggio EmiliaReggio EmiliaItaly

Personalised recommendations