Advertisement

Indian Journal of Microbiology

, Volume 52, Issue 1, pp 3–12 | Cite as

Potentials of Exopolysaccharides from Lactic Acid Bacteria

  • Seema Patel
  • Avishek Majumder
  • Arun Goyal
Review Article

Abstract

Recent research in the area of importance of microbes has revealed the immense industrial potential of exopolysaccharides and their derivative oligosaccharides from lactic acid bacteria. However, due to lack of adequate technological knowledge, the exopolysaccharides have remained largely under exploited. In the present review, the enormous potentials of different types of exopolysaccharides from lactic acid bacteria are described. This also summarizes the recent advances in the applications of exopolysaccharides, certain problems associated with their commercial production and the remedies.

Keywords

Lactic acid bacteria Exopolysaccharides Probiotic Prebiotic Oligosaccharides 

References

  1. 1.
    Cerning J, Marshall VME (1999) Exopolysaccharides produced by the dairy lactic acid bacteria. Recent Res Dev Microbiol 3:195–209Google Scholar
  2. 2.
    De Vuyst L, Degeest B (1999) Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol Rev 23:153–177PubMedCrossRefGoogle Scholar
  3. 3.
    Laws A, Gu Y, Marshall V (2001) Biosynthesis, characterisation, and design of bacterial exopolysaccharides from lactic acid bacteria. Biotechnol Adv 19:597–625PubMedCrossRefGoogle Scholar
  4. 4.
    Duboc P, Mollet B (2001) Applications of exopolysaccharides in the dairy industry. Int Dairy J 11:759–768CrossRefGoogle Scholar
  5. 5.
    Iliev I, Ivanova I, Ignatova C (2006) Glucansucrases from lactic acid bacteria (LAB). Biotechnol Biotechnol Equipment 3:15–20Google Scholar
  6. 6.
    Doleyres Y, Schaub L, Lacroix C (2005) Comparison of functionality of exopolysaccharides produced in situ or added as bio-ingredients on yoghurt properties. J Dairy Sci 88:4146–4156PubMedCrossRefGoogle Scholar
  7. 7.
    Remaud-Simeon M, Willemot RM, Sarcabal P, de Montalk GP, Monsan P (2000) Glucansucrases: molecular engineering and oligosaccharide synthesis. J Mol Catal B 10:117–128CrossRefGoogle Scholar
  8. 8.
    Degeest B, Vaningelgem F, De Vuyst L (2001) Microbial physiology, fermentation kinetics, and process engineering of heteropolysaccharide production by lactic acid bacteria. Int Dairy J 11:747–757CrossRefGoogle Scholar
  9. 9.
    Majamaa H, Isolauri E, Saxelin M, Vesikari T (1995) Lactic acid bacteria in the treatment of acute rotavirus gastroenteritis. J Pediatr Gastroenterol Nutr 20:333–338PubMedCrossRefGoogle Scholar
  10. 10.
    Looijesteijn PJ, Trapet L, De vries E, Abee T, Hugenholtz J (2001) Physiological function of exopolysaccharides produced by Lactococcus lactis. Int J Food Microbiol 64:71–80PubMedCrossRefGoogle Scholar
  11. 11.
    Jolly L, Vincent SJ, Duboc P, Neeser JR (2002) Exploiting exopolysaccharides from lactic acid bacteria. Antonie Van Leeuwenhoek 82:367–374PubMedCrossRefGoogle Scholar
  12. 12.
    Monsan P, Bozonnet S, Albenne C, Joucla G, Willemot R, Remaud-Simeson M (2001) Homopolysaccharides from lactic acid bacteria. Int Dairy J 11:675–685CrossRefGoogle Scholar
  13. 13.
    Robyt JF (1995) Mechanisms in the glucansucrase synthesis of polysaccharides and oligosaccharides from sucrose. Adv Carbohydr Chem Biochem 51:133–168PubMedCrossRefGoogle Scholar
  14. 14.
    Goulas AK, Fisher DA, Grimble GK, Grandison AS, Rastall RA (2004) Synthesis of isomaltooligosaccharides and oligodextrans by the combined use of dextransucrase and dextranase. Enzyme Microb Technol 35:327–338CrossRefGoogle Scholar
  15. 15.
    Purama RK, Goyal A (2005) Dextransucrase production by Leuconostoc mesenteroides. Indian J Microbiol 2:89–101Google Scholar
  16. 16.
    Purama RK, Goswami P, Khan AT, Goyal A (2009) Structural analysis and properties of dextran produced by Leuconostoc mesenteroides NRRL B-640. Carbohydr Polym 76:30–35CrossRefGoogle Scholar
  17. 17.
    Majumder A, Goyal A (2008) Rheological and gelling properties of a novel glucan from Leuconostoc dextranicum NRRL B-1146. Food Res Int 42:525–528CrossRefGoogle Scholar
  18. 18.
    Naessens M, Cerdobbel AN, Soetaert W, Vandamme EJ (2005) Leuconostoc dextransucrase and dextran: production, properties and applications. J Chem Technol Biotechnol 80:845–860CrossRefGoogle Scholar
  19. 19.
    Walsh D, Arcelli L, Ikoma T, Tanaka J, Mann S (2003) Dextran templating for the synthesis of metallic and metal oxide sponges. Nat Mater 2:386–390PubMedCrossRefGoogle Scholar
  20. 20.
    Padmanabhan PA, Kim DS (2002) Production of insoluble dextran using cell-bound dextransucrase of Leuconostoc mesenteroides NRRL B-523. Carbohydr Res 337:1529–1533PubMedCrossRefGoogle Scholar
  21. 21.
    De Vuyst L, De Vin F, Vaningelgem F, Degeest B (2001) Recent developments in the biosynthesis and applications of heteropolysaccharides from lactic acid bacteria. Int Dairy J 11:687–707CrossRefGoogle Scholar
  22. 22.
    Oguma T, Kawamoto H (2003) Production of cyclodextran and its application. Trends Glycosci Glycotechnol 15:91–99CrossRefGoogle Scholar
  23. 23.
    Bautista MC, Bomati-Miguel O, Morales MP, Serna CJ, Veintemillas-Verdaguer S (2005) Surface characterisation of dextran-coated iron oxide nanoparticles prepared by laser pyrolysis and coprecipitation. J Magn Magn Mater 293:20–27CrossRefGoogle Scholar
  24. 24.
    Sengupta A, Wang S, Link E, Anderson EH, Hofmann C, Lewandowski J, Kottke-Marchant K, Marchant RE (2006) Glycocalyx-mimetic dextran modified poly (vinyl amine) surfactant coating reduces platelet adhesion on medical-grade polycarbonate surface. Biomaterials 27:3084–3095CrossRefGoogle Scholar
  25. 25.
    Leathers TD, Nunnally MS, Ahlgren JA, Cote GL (2003) Characterization of a novel modified alternan. Carbohydr Polym 54:107–113CrossRefGoogle Scholar
  26. 26.
    Cote GL (2009) Acceptor products of alternansucrase with gentiobiose production of novel oligosaccharides for food and feed and elimination of bitterness. Carbohydr Res 344:187–190PubMedCrossRefGoogle Scholar
  27. 27.
    Kralj S, Stripling E, Sanders P, van Geel-Schutten GH, Dijkhuizen L (2005) Highly hydrolytic reuteransucrase from probiotic Lactobacillus reuteri strain ATCC 55730. Appl Environ Microbiol 71:3942–3950PubMedCrossRefGoogle Scholar
  28. 28.
    Arendt EK, Ryan LAM, Bello FD (2007) Impact of sourdough on the texture of bread. Food Microbiol 24:165–174PubMedCrossRefGoogle Scholar
  29. 29.
    Yoon EJ, Yoo SH, Cha J, Lee HG (2004) Effect of levan’s branching structure on antitumor activity. Int J Biol Macromol 34:191–194PubMedCrossRefGoogle Scholar
  30. 30.
    Korakli M, Pavlovic M, Ganzle MG, Vogel RF (2003) Exopolysaccharide and ketose production by Lactobacillus sanfranciscensis LTH 2590. Appl Environ Microbiol 69:2073–2079PubMedCrossRefGoogle Scholar
  31. 31.
    Yoo SH, Yoon EJ, Cha E, Lee HG (2004) Antitumor activity of levan polysaccharides from selected microorganisms. Int J Biol Macromol 34:37–41PubMedCrossRefGoogle Scholar
  32. 32.
    Sartor RB (2004) Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: antibiotics, probiotics, and prebiotics. J Gastroenterol 126:1620–1633CrossRefGoogle Scholar
  33. 33.
    Pool-Zobel BL (2005) Inulin-type fructans and reduction in colon cancer risk: review of experimental and human data. Br J Nutr 93:73–90CrossRefGoogle Scholar
  34. 34.
    Micheli L, Ucelletti D, Palleschi C, Crescenzi V (1999) Isolation and characterization of a ropy Lactobacillus strain producing the exopolysaccharide kefiran. Appl Microbiol Biotechnol 53:69–74PubMedCrossRefGoogle Scholar
  35. 35.
    Piermaria JA, Pinotti A, Garcia MA, Abraham AG (2009) Films based on kefiran, an exopolysaccharide obtained from kefir grains: development and characterization. Food Hydrocoll 23:684–690CrossRefGoogle Scholar
  36. 36.
    Vinderola G, Perdigon G, Duarte J, Farnworth E, Matar C (2006) Effects of the oral administration of the exopolysaccharide produced by Lactobacillus kefiranofaciens on the gut mucosal immunity. Cytokine 36:254–260PubMedCrossRefGoogle Scholar
  37. 37.
    Medrano M, Perez PF, Abraham AG (2008) Kefiran antagonizes cytopathic effects of Bacillus cereus extracellular factors. Int J Food Microbiol 122:1–7PubMedCrossRefGoogle Scholar
  38. 38.
    Ahmed NH, El Soda M, Hassan AN, Frank J (2005) Improving the textural properties of an acid-coagulated (Karish) cheese using exopolysaccharide producing cultures. (Lebensmittel- Wissenschaft und- Technologie) Food Sci Technol 38:843–847Google Scholar
  39. 39.
    Tieking M, Ganzle MG (2005) Exopolysaccharides from cereal associated lactobacilli. Trends Food Sci Technol 16:79–84CrossRefGoogle Scholar
  40. 40.
    de Roos NM, Katan MB (2000) Effects of probiotic bacteria on diarrhoea, lipid metabolism, and carcinogenesis: a review of papers published between 1988 and 1998. Am J Clin Nutr 71:405–411PubMedGoogle Scholar
  41. 41.
    Vandamme TF, Lenourry A, Charrueau C, Chaumeil JC (2002) The use of polysaccharides to target drugs to the colon. Carbohydr Polym 48:219–231CrossRefGoogle Scholar
  42. 42.
    Kitazawa H, Ishii Y, Uemura J, Kawai Y, Saito T, Kaneko T, Itoh T (2000) Augmentation of macrophage functions by an extracellular phosphopolysaccharide from Lactobacillus delbrueckii ssp bulgaricus. Food Microbiol 17:109–118CrossRefGoogle Scholar
  43. 43.
    Iliev I, Vassileva T, Ignatova C, Ivanova I, Haertle′ T, Monsan P, Chobert JM (2008) Gluco-oligosaccharides synthesized by glucosyltransferases from constitutive mutants of Leuconostoc mesenteroides strain Lm 28. J Appl Microbiol 104:243–250PubMedGoogle Scholar
  44. 44.
    Loo JV, Cummings J, Delzenne N, Englyst H, Franck A, Hopkins M, Kok N, Macfarlane G, Newton D, Quigley M, Roberfroid M, van Vliet T, van den Heuvel E (1999) Functional food properties of non-digestible oligosaccharides: a consensus report from the ENDO project (DGXII AIRII-CT94–1095). Br J Nutr 81:121–132PubMedGoogle Scholar
  45. 45.
    Yoo SH, Kweon MR, Kim MJ, Auh JH, Jung DS, Kim JR, Yook C, Kim JW, Park KH (2006) Branched oligosaccharides concentrated by yeast fermentation and effectiveness as a low sweetness humectant. J Food Sci 60:516–521CrossRefGoogle Scholar
  46. 46.
    Wang HF, Lim PS, Kao MD, Chan EC, Lin LC, Wang PN (2001) Use of isomaltooligosaccharides in the treatment of lipid profiles and constipation in hemodialysis patients. J Ren Nutr 11:73–79PubMedCrossRefGoogle Scholar
  47. 47.
    Taper HS, Roberfroid MB (2002) Inulin/oligofructose and anticancer therapy. Br J Nutr 87:283–286CrossRefGoogle Scholar
  48. 48.
    Scholz-Ahrens KE, Schrezenmeir J (2002) Inulin, oligofructose and mineral metabolism. Br J Nutr 87:179–186CrossRefGoogle Scholar
  49. 49.
    Sangeetha PT, Ramesh MN, Prapulla SG (2005) Recent trends in the microbial production, analysis and application of fructooligosaccharides. Trends Food Sci Technol 6:442–457CrossRefGoogle Scholar
  50. 50.
    Broadbent JR, McMahon DJ, Welker DL, Oberg CJ, Moineau S (2003) Biochemistry, genetics, and applications of exopolysaccharide production in Streptococcus thermophilus: a review. J Dairy Sci 86:407–423PubMedCrossRefGoogle Scholar
  51. 51.
    Welman AD, Maddox IS (2003) Exopolysaccharides from lactic acid bacteria: perspectives and challenges. Trends Biotechnol 21:269–274PubMedCrossRefGoogle Scholar
  52. 52.
    Macedo MG, Lacroix C, Gardner NJ, Champagne CP (2002) Effect of medium supplementation on exopolysaccharide production by Lactobacilus rhamnosus RW-9595 M in whey permeate. Int Dairy J 12:419–426CrossRefGoogle Scholar
  53. 53.
    Stingele F, Neeser JR, Mollet B (1996) Identification and characterization of the eps (exopolysaccharide) gene cluster from Streptococcus thermophilus Sfi6. J Bacteriol 178:1680–1690PubMedGoogle Scholar
  54. 54.
    Van Kranenburg R, Marugg JD, van Swam II, Willem NJ (1997) Molecular characterization of the plasmid-encoded eps gene cluster essential for exopolysaccharide biosynthesis in Lactococcus lactis. Mol Microbiol 24:387–397PubMedCrossRefGoogle Scholar
  55. 55.
    Lamothe GT, Jolly L, Mollet B, Stingele F (2002) Genetic and biochemical characterization of exopolysaccharide biosynthesis by Lactobacillus delbrueckii subsp bulgaricus. Arch Microbiol 178:218–228PubMedCrossRefGoogle Scholar
  56. 56.
    Jolly L, Stingele F (2001) Molecular organization and functionality of exopolysaccharide gene clusters in lactic acid bacteria. Int Dairy J 11:733–745CrossRefGoogle Scholar
  57. 57.
    Charron-Bourgoin F, Pluvinet A, Morel C, Guédon G, Decaris B (2001) Polymorphism of eps loci involved in exopolysaccharide synthesis of Streptococcus thermophilus. Lait 81:281–288CrossRefGoogle Scholar
  58. 58.
    Boels IC, Ramos A, Kleerebezem M, de Vos WM (2001) Functional analysis of the Lactococcus lactis galU and galE genes and their impact on sugar nucleotide and exopolysaccharide biosynthesis. Appl Environ Microbiol 67:3033–3040PubMedCrossRefGoogle Scholar
  59. 59.
    Ruas-Madiedo P, de los Reyes-Gavilán CG (2005) Methods for the screening, isolation and characterization of exopolysaccharides produced by lactic acid bacteria. J Dairy Sci 88:843–856PubMedCrossRefGoogle Scholar
  60. 60.
    Sutherland IW (1999) Polysaccharases for microbial exopolysaccharides. Carbohydr Polym 38:319–328CrossRefGoogle Scholar
  61. 61.
    Ruijssenaars HJ, Stingele F, Hartmans S (2000) Biodegradability of food-associated extracellular polysaccharides. Curr Microbiol 40:194–199PubMedCrossRefGoogle Scholar
  62. 62.
    Breedveld M, Bonting K, Dijkhuizen L (1998) Mutational analysis of exopolysaccharide biosynthesis by Lactobacillus sakei 0–1. FEMS Microbiol Lett 169:241–249PubMedGoogle Scholar
  63. 63.
    Stingele F, Vincent SJF, Faber EJ, Newel JW, Kamerling JP, Neeser JR (1999) Introduction of the exopolysaccharide gene cluster from Streptococcus thermophilus Sfi6 into Lactococcus lactis MG1363: production and characterization of an altered polysaccharide. Mol Microbiol 32:1287–1295PubMedCrossRefGoogle Scholar
  64. 64.
    Grobben GJ, Smith MR, Sikkema J, de Bont JAM (1996) Influence of fructose and glucose on the production of exopolysaccharides and the activities of enzymes involved in the sugar metabolism and the synthesis of sugar nucleotides in Lactobacillus delbrueckii subsp. bulgaricus NCFB 2772. Appl Microbiol Biotechnol 46:279–284CrossRefGoogle Scholar
  65. 65.
    Majumder A, Singh A, Goyal A (2008) Application of response surface methodology for glucan production from Leuconostoc dextranicum and its structural characterization. Carbohydr Polym 75:150–156CrossRefGoogle Scholar
  66. 66.
    Majumder A, Bhandari S, Purama RK, Patel S, Goyal A (2009) Enhanced production of a novel dextran from Leuconostoc mesenteroides NRRL B-640 by response surface methodology. Annals Microbiol 59(2):309–315CrossRefGoogle Scholar
  67. 67.
    Azeredo J, Oliveira R (2000) The role of exopolymer in the attachment of Sphingomonas paucimobilis. Biofouling 16:59–67CrossRefGoogle Scholar
  68. 68.
    Poulsen LV (1999) Microbial biofilm in food processing. Food Sci Technol (Lebensmittel-Wissenschaft und- Technologie) 32:321–326Google Scholar

Copyright information

© Association of Microbiologists of India 2011

Authors and Affiliations

  1. 1.Department of BiotechnologyIndian Institute of Technology GuwahatiGuwahatiIndia
  2. 2.Department of System BiologyTechnical University of DenmarkLyngbyDenmark

Personalised recommendations