Indian Journal of Microbiology

, Volume 50, Issue 4, pp 362–368 | Cite as

Indole Affects Biofilm Formation in Bacteria

  • Mingxi Hu
  • Can Zhang
  • Yufei Mu
  • Qianwei Shen
  • Yongjun FengEmail author
Review Article


Biofilm is bacterial population adherent to each other and to surfaces or interfaces, often enclosed by a matrix. Various biomolecules contribute to the establishment of biofilms, yet the process of building a biofilm is still under active investigation. Indole is known as a metabolite of amino acid tryptophan, which, however, has recently been proved to participate in various aspects of bacterial life including virulence induction, cell cycle regulation, acid resistance, and especially, signaling biofilm formation. Moreover, indole is also proposed to be a novel signal involved in quorum sensing, a bacterial cooperation behavior sometimes concerning the biofilm formation. Here the signaling role and molecular mechanism of indole on bacterial biofilm formation are reviewed, as well discussed is its relation to bacterial living adaptivity.


Indole Biofilm Bacterial signal Quorum sensing 



This work was supported by the National Natural Science Foundation of China (Nos. 30870055 and 30400002) to F.Y.


  1. 1.
    von Bodman SB, Willey JM, Diggle SP (2008) Cell–cell communication in bacteria: united we stand. J Bacteriol 190:4377–4391CrossRefGoogle Scholar
  2. 2.
    Hooshangi S, Bentley WE (2008) From unicellular properties to multicellular behavior: bacteria quorum sensing circuitry and applications. Curr Opin Biotechnol 19:550–555PubMedCrossRefGoogle Scholar
  3. 3.
    Lee JH, Lee J (2010) Indole as an intercellular signal in microbial communities. FEMS Microbiol Rev 34:426–444PubMedGoogle Scholar
  4. 4.
    Isaacs H Jr, Chao D, Yanofsky C, Saier MH Jr (1994) Mechanism of catabolite repression of tryptophanase synthesis in Escherichia coli. Microbiology 140:2125–2134PubMedCrossRefGoogle Scholar
  5. 5.
    Lee J, Zhang X, Hegde M, Bentley WE, Jayaraman A, Wood TK (2008) Indole cell signaling occurs primarily at low temperatures in Escherichia coli. ISME J 2:1007–1023PubMedCrossRefGoogle Scholar
  6. 6.
    Anyanful A, Dolan-Livengood JM, Lewis T, Sheth S, DeZalia MN, Sherman MA, Kalman LV, Benian GM, Kalman D (2005) Paralysis and killing of Caenorhabditis elegans by enteropathogenic Escherichia coli requires the bacterial tryptophanase gene. Mol Microbiol 57:988–1007PubMedCrossRefGoogle Scholar
  7. 7.
    Hirakawa H, Kodama T, Takumi-Kobayashi A, Honda T, Yamaguchi A (2009) Secreted indole serves as a signal for expression of type III secretion system translocators in enterohaemorrhagic Escherichia coli O157:H7. Microbiology 155:541–550PubMedCrossRefGoogle Scholar
  8. 8.
    Nishino K, Honda T, Yamaguchi A (2005) Genome-wide analyses of Escherichia coli gene expression responsive to the BaeSR two-component regulatory system. J Bacteriol 187:1763–1772PubMedCrossRefGoogle Scholar
  9. 9.
    Chant EL, Summers DK (2007) Indole signalling contributes to the stable maintenance of Escherichia coli multicopy plasmids. Mol Microbiol 63:35–43PubMedCrossRefGoogle Scholar
  10. 10.
    Chattoraj DK (2007) Tryptophanase in sRNA control of the Escherichia coli cell cycle. Mol Microbiol 63:1–3PubMedCrossRefGoogle Scholar
  11. 11.
    Wang D, Ding X, Rather PN (2001) Indole can act as an extracellular signal in Escherichia coli. J Bacteriol 183:4210–4216PubMedCrossRefGoogle Scholar
  12. 12.
    Englert DL, Manson MD, Jayaraman A (2009) Flow-based microfluidic device for quantifying bacterial chemotaxis in stable, competing gradients. Appl Environ Microbiol 75:4557–4564PubMedCrossRefGoogle Scholar
  13. 13.
    Zobell CE, Anderson DQ (1936) Observation on the multiplication of bacteria in different volumes of stored sea water and the influence of oxygen tension and solid surfaces. Biol Bull 71:324–342CrossRefGoogle Scholar
  14. 14.
    Cotter PA, Stibitz S (2007) c-di-GMP-mediated regulation of virulence and biofilm formation. Curr Opin Microbiol 10:17–23PubMedCrossRefGoogle Scholar
  15. 15.
    Jonas K, Melefors O, Romling U (2009) Regulation of c-di-GMP metabolism in biofilms. Future Microbiol 4:341–358PubMedCrossRefGoogle Scholar
  16. 16.
    Davies DG, Marques CNH (2009) A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J Bacteriol 191:1393–1403PubMedCrossRefGoogle Scholar
  17. 17.
    Southey-Pilling CJ, Davies DG, Sauer K (2005) Characterization of temporal protein production in Pseudomonas aeruginosa biofilm. J Bacteriol 187:8114–8126CrossRefGoogle Scholar
  18. 18.
    Parsek MR, Tolker-Nielsen T (2008) Pattern formation in Pseudomonas aeruginosa biofilms. Curr Opin Microbiol 11:560–566PubMedGoogle Scholar
  19. 19.
    Rahmati S, Yang S, Davidson AL, Zechiedrich EL (2002) Control of the AcrAB multidrug efflux pump by quorum-sensing regulator SdiA. Mol Microbiol 43:677–685PubMedCrossRefGoogle Scholar
  20. 20.
    Lindsay A, Ahmer BM (2005) Effect of sdiA on biosensors of N-acylhomoserine lactones. J Bacteriol 187:5054–5058PubMedCrossRefGoogle Scholar
  21. 21.
    Lee J, Jayaraman A, Wood TK (2007) Indole is an inter-species biofilm signal mediated by SdiA. BMC Microbiol 7:42PubMedCrossRefGoogle Scholar
  22. 22.
    Domka J, Lee J, Wood TK (2006) YliH (BssR) and YceP (BssS) regulate Escherichia coli K-12 biofilm formation by influencing cell signaling. Appl Environ Microbiol 72:2449–2459PubMedCrossRefGoogle Scholar
  23. 23.
    Wood TK (2009) Insights on Escherichia coli biofilm formation and inhibition from whole-transcriptome profiling. Environ Microbiol 11:1–15PubMedCrossRefGoogle Scholar
  24. 24.
    Lee J, Page R, Garcia-Contreras R, Palermino J, Zhang X, Doshi O, Wood TK, Peti W (2007) Structure and function of the Escherichia coli protein YmgB: a protein critical for biofilm formation and acid-resistance. J Mol Biol 373:11–26PubMedCrossRefGoogle Scholar
  25. 25.
    Zhang XS, Garcia-Contreras R, Wood TK (2007) YcfR (BhsA) influences Escherichia coli biofilm formation through stress response and surface hydrophobicity. J Bacteriol 189:3051–3062PubMedCrossRefGoogle Scholar
  26. 26.
    Kuczynska-Wisnik D, Matuszewska E, Laskowska E (2010) Escherichia coli heat-shock proteins IbpA and IbpB affect biofilm formation by influencing the level of extracellular indole. Microbiology 156:148–157PubMedCrossRefGoogle Scholar
  27. 27.
    Kuczynska-Wisnik D, Matuszewska E, Furmanek-Blaszk B, Leszczynska D, Grudowska A, Szczepaniak P, Laskowska E (2010) Antibiotics promoting oxidative stress inhibit formation of Escherichia coli biofilm via indole signaling. Res Microbiol 161:847–853PubMedCrossRefGoogle Scholar
  28. 28.
    Lee HH, Molla MN, Cantor CR, Collins JJ (2010) Bacterial charity work leads to population-wide resistance. Nature 467:82–85PubMedCrossRefGoogle Scholar
  29. 29.
    Lelong C, Aguiluz K, Luche S, Kuhn L, Garin J, Rabilloud T, Geiselmann J (2007) The Crl-RpoS regulon of Escherichia coli. Mol Cell Proteomics 6:648–659PubMedCrossRefGoogle Scholar
  30. 30.
    Patten CL, Kirchhof MG, Schertzberg MR, Morton RA, Schellhorn HE (2004) Microarray analysis of RpoS-mediated gene expression in Escherichia coli K-12. Mol Genet Genomics 272:580–591PubMedCrossRefGoogle Scholar
  31. 31.
    Landini P (2009) Cross-talk mechanisms in biofilm formation and responses to environmental and physiological stress in Escherichia coli. Res Microbiol 160:259–266PubMedCrossRefGoogle Scholar
  32. 32.
    Ito A, May T, Kawata K, Okabe S (2008) Significance of rpoS during maturation of Escherichia coli biofilms. Biotechnol Bioeng 99:1462–1471PubMedCrossRefGoogle Scholar
  33. 33.
    Collet A, Vilain S, Cosette P, Junter GA, Jouenne T, Phillips RS, Di Martino P (2007) Protein expression in Escherichia coli S17-1 biofilms: impact of indole. Antonie Van Leeuwenhoek 91:71–85PubMedCrossRefGoogle Scholar
  34. 34.
    Robbe-Saule V, Jaumouille V, Prevost MC, Guadagnini S, Talhouarne C, Mathout H, Kolb A, Norel F (2006) Crl activates transcription initiation of RpoS-regulated genes involved in the multicellular behavior of Salmonella enterica serovar Typhimurium. J Bacteriol 188:3983–3994PubMedCrossRefGoogle Scholar
  35. 35.
    Chi F, Wang Y, Gallaher TK, Wu C, Jong A, Huang S (2009) Identification of IbeR as a stationary-phase regulator in meningitic Escherichia coli K1 that carries a loss-of-function mutation in rpoS. J Biomed Biotechnol 2009:520283PubMedGoogle Scholar
  36. 36.
    Franze de Fernandez MT, Eoyang L, August JT (1968) Factor fraction required for the synthesis of bacteriophage Qβ RNA. Nature 219:588–590PubMedCrossRefGoogle Scholar
  37. 37.
    Antal M, Bordeau V, Douchin V, Felden B (2005) A small bacterial RNA regulates a putative ABC transporter. J Biol Chem 280:7901–7908PubMedCrossRefGoogle Scholar
  38. 38.
    Kulesus RR, Diaz-Perez K, Slechta ES, Eto DS, Mulvey MA (2008) Impact of the RNA chaperone Hfq on the fitness and virulence potential of uropathogenic Escherichia coli. Infect Immun 76:3019–3026PubMedCrossRefGoogle Scholar
  39. 39.
    Sonnleitner E, Hagens S, Rosenau F, Wilhelm S, Habel A, Jäger K, Bläsi U (2003) Reduced virulence of a hfq mutant of Pseudomonas aeruginosa O1. Microb Pathog 35:217–228PubMedCrossRefGoogle Scholar
  40. 40.
    Zhang Y, Hong G (2009) Evidences of Hfq associates with tryptophanase and affects extracellular indole levels. Acta Biochim Biophys Sin 41:709–717PubMedCrossRefGoogle Scholar
  41. 41.
    Martino PD, Fursy R, Bret L, Sundararaju B, Phillips RS (2003) Indole can act as an extracellular signal to regulate biofilm formation of Escherichia coli and other indole-producing bacteria. Can J Microbiol 49:443–449PubMedCrossRefGoogle Scholar
  42. 42.
    Mueller RS, Beyhan S, Saini SG, Yildiz FH, Bartlett DH (2009) Indole acts as an extracellular cue regulating gene expression in Vibrio cholerae. J Bacteriol 191:3504–3516PubMedCrossRefGoogle Scholar
  43. 43.
    Sasaki-Imamura T, Yano A, Yoshida Y (2010) Production of indole from l-tryptophan and effects of these compounds on biofilm formation by Fusobacterium nucleatum ATCC 25586. Appl Environ Microbiol 76:4260–4268PubMedCrossRefGoogle Scholar
  44. 44.
    Lee J, Attila C, Cirillo SLG, Cirillo JD, Wood TK (2009) Indole and 7-hydroxyindole diminish Pseudomonas aeruginosa virulence. Microb Biotechnol 2:75–90PubMedCrossRefGoogle Scholar
  45. 45.
    Di Martino P, Merieau A, Phillips R, Orange N, Hulen C (2002) Isolation of an Escherichia coil strain mutant unable to form biofilm on polystyrene and to adhere to human pneumocyte cells: involvement of tryptophanase. Can J Microbiol 48:132–137PubMedCrossRefGoogle Scholar
  46. 46.
    Yildiz FH, Visick KL (2009) Vibrio biofilms: so much the same yet so different. Trends Microbiol 17:109–118PubMedCrossRefGoogle Scholar
  47. 47.
    Ahmer BM (2004) Cell-to-cell signalling in Escherichia coli and Salmonella enterica. Mol Microbiol 52:933–945PubMedCrossRefGoogle Scholar
  48. 48.
    Walters M, Sircili MP, Sperandio V (2006) AI-3 synthesis is not dependent on luxS in Escherichia coli. J Bacteriol 188:5668–5681PubMedCrossRefGoogle Scholar
  49. 49.
    Lee J, Bansal T, Jayaraman A, Bentley WE, Wood TK (2007) Enterohemorrhagic Escherichia coli biofilms are inhibited by 7-hydroxyindole and stimulated by isatin. Appl Environ Microbiol 73:4100–4109PubMedCrossRefGoogle Scholar
  50. 50.
    Winzer K, Hardie KR, Williams P (2002) Bacterial cell-to-cell communication: sorry, can’t talk now—gone to lunch!. Curr Opin Microbiol 5:216–222PubMedCrossRefGoogle Scholar
  51. 51.
    Ren D, Bedzyk LA, Ye RW, Thomas SM, Wood TK (2004) Stationary-phase quorum-sensing signals affect autoinducer-2 and gene expression in Escherichia coli. Appl Environ Microbiol 70:2038–2043PubMedCrossRefGoogle Scholar
  52. 52.
    Fishman A, Tao Y, Rui L, Wood TK (2005) Controlling the regiospecific oxidation of aromatics via active site engineering of toluene para-monooxygenase of Ralstonia pickettii PKO1. J Biol Chem 280:506–514PubMedGoogle Scholar
  53. 53.
    Rui L, Reardon KF, Wood TK (2005) Protein engineering of toluene ortho-monooxygenase of Burkholderia cepacia G4 for regiospecific hydroxylation of indole to form various indigoid compounds. Appl Microbiol Biotechnol 66:422–429PubMedCrossRefGoogle Scholar
  54. 54.
    Tao Y, Fishman A, Bentley WE, Wood TK (2004) Altering toluene 4-monooxygenase by active-site engineering for the synthesis of 3-methoxycatechol, methoxyhydroquinone, and methylhydroquinone. J Bacteriol 186:4705–4713PubMedCrossRefGoogle Scholar
  55. 55.
    Guan C, Ju J, Borlee BR, Williamson LL, Shen B, Raffa KF, Handelsman J (2007) Signal mimics derived from a metagenomic analysis of the gypsy moth gut microbiota. Appl Environ Microbiol 73:3669–3676PubMedCrossRefGoogle Scholar
  56. 56.
    Blankenhorn D, Phillips J, Slonczewski JL (1999) Acid- and base-induced proteins during aerobic and anaerobic growth of Escherichia coli revealed by two-dimensional gel electrophoresis. J Bacteriol 181:2209–2216PubMedGoogle Scholar
  57. 57.
    Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448PubMedCrossRefGoogle Scholar
  58. 58.
    Feng Y, Shen D, Song W (2006) Rice endophyte Pantoea agglomerans YS19 promotes host plant growth and affects allocations of host photosynthates. J Appl Microbiol 100:938–945PubMedCrossRefGoogle Scholar
  59. 59.
    Duan J, Yi T, Lu Z, Sheng D, Feng Y (2007) Pantoea agglomerans YS19 forms multicellular symplasmata via cell aggregation. FEMS Microbiol Lett 270:220–226PubMedCrossRefGoogle Scholar
  60. 60.
    Miao Y, Zhou J, Chen C, Shen D, Song W, Feng Y (2008) In vitro adsorption revealing an apparent strong interaction between endophyte Pantoea agglomerans YS19 and host rice. Curr Microbiol 57:547–551PubMedCrossRefGoogle Scholar
  61. 61.
    Bianco C, Imperlini E, Calogero R, Senatore B, Amoresano A, Carpentieri A, Pucci P, Defez R (2006) Indole-3-acetic acid improves Escherichia coli’s defences to stress. Arch Microbiol 185:373–382PubMedCrossRefGoogle Scholar
  62. 62.
    Spaepen S, Das F, Luyten E, Michiels J, Vanderleyden J (2009) Indole-3-acetic acid-regulated genes in Rhizobium etli CNPAF512. FEMS Microbiol Lett 291:195–200PubMedCrossRefGoogle Scholar

Copyright information

© Association of Microbiologists of India 2011

Authors and Affiliations

  • Mingxi Hu
    • 1
  • Can Zhang
    • 1
  • Yufei Mu
    • 1
  • Qianwei Shen
    • 1
  • Yongjun Feng
    • 1
    Email author
  1. 1.School of Life ScienceBeijing Institute of TechnologyBeijingPeople’s Republic of China

Personalised recommendations