Indian Journal of Microbiology

, Volume 51, Issue 2, pp 217–222 | Cite as

Topical Treatment of Dermatophytic Lesion on Mice (Mus musculus) Model

  • Bindu SharmaEmail author
  • Padma Kumar
  • Suresh Chandra Joshi
Original Article


Antidermatophytic potential of three weed plants viz. Tridax procumbens L., Capparis decidua (forsk) Edgew and Lantana camara L. were explored and experimentally induced dermatophytic lesion was topically treated in mice. Microbroth dilution method was carried out for determination of MIC and MFC of different extracts of selected plants. In animal studies, mice were experimentally inoculated with Trichophyton mentagrophytes and infected animals were topically treated with 5 mg/g terbinafine and two concentrations, i.e., 5 and 10 mg/g of test extract ointment. Complete recovery from the infection was observed on 12th day of treatment for reference drug terbinafine (5 mg/g) and 10 mg/g concentration of test extract ointment whereas 5 mg/g concentration of test extract ointment showed complete cure on 16th day of treatment. Fungal burden was also calculated by culturing skin scrapings from infected animals of different groups. Test extract ointment successfully treated induced dermatophytosis in mice without any disease recurrence incidences, thereby indicating efficacy of test extract as an excellent topical antifungal agent for the cure of dermatophytosis.


Dermatophytosis Flavonoids Trichophyton mentagrophytes 



Authors are thankful to Head, Department of Botany and Department of Zoology, University of Rajasthan for providing all necessary facilities. Financial support of UGC, Delhi is gratefully acknowledged.


  1. 1.
    Weitzman I, Summerbell RC (1995) The dermatophytes. Clin Microbiol Rev 8:240–259PubMedGoogle Scholar
  2. 2.
    Venugopal PV, Venugopal TV (1994) Antidermatophytic activity of neem (Azadirachta indica) leaves in vitro. Indian J Pharmacol 26:141–143Google Scholar
  3. 3.
    Treiber A, Pittermann W, Schuppe HC (2001) Efficacy testing of antimycotic prophylactics in an animal model. Int J Hyg Environ Health 204(4):1–5CrossRefGoogle Scholar
  4. 4.
    Donald GF, Brown G (1964) T. mentagrophytes and T. mentagrophytes var quinckeanum infections of South Australian mice. Aust J Dermatol 7:135–140PubMedCrossRefGoogle Scholar
  5. 5.
    Bilek J, Baranova Z, Kozak M, Fialkovicova M, Weissova T, Sesztakova E (2005) Trichophyton menatgropjhytes var quinckeanum as a cause of zoophilic dermatomycosis in a human family. Bratisl Lek Listy 106(12):383–385PubMedGoogle Scholar
  6. 6.
    Garcia-Sanchez MS, Pereiro MM, Toribio J (1997) Favus due to Trichophyton mentagrophytes var quinckeanum. Dermatology 194(2):177–179PubMedCrossRefGoogle Scholar
  7. 7.
    Mantovani A (1978) The hole of animals in the epidemiology of the mycoses. Mycopathologia 65(1):61–66PubMedCrossRefGoogle Scholar
  8. 8.
    Moriello KA (1990) Management of dermatophyte infection in catteries and multiple cat households. Adv Clin Dermatol 20(6):1456–1474Google Scholar
  9. 9.
    Hay RJ (2001) The future of onychomycosis therapy may involve a combination of approaches. Br J Dermatol 145:3–8PubMedGoogle Scholar
  10. 10.
    Watanabe S (1999) Present state and future directions of topical antifungals. Jpn J Med Mycol 40:151–155CrossRefGoogle Scholar
  11. 11.
    Artis WM, Odle BM, Jones HE (1981) Griseofulvin resistant dermatophytosis correlates with in vitro resistance. Arch Dermatol 117(1):16–19PubMedCrossRefGoogle Scholar
  12. 12.
    Tiwari TN, Chansauria JPN, Dubey NK (2003) Antimycotic potency of some essential oils in the treatment of induced dermatomycosis of an experimental animal. Pharm Biol 41(5):351–356CrossRefGoogle Scholar
  13. 13.
    Subramanian SS, Nagarjan S (1969) Flavonoids of the seeds of Crotolaria retusa and Crotolaria striata. Curr Sci 38:65Google Scholar
  14. 14.
    Basri DF, Fan SH (2005) The potential of aqueous and acetone extracts of galls of Quercus infectoria as antibacterial agents. Indian J Pharmacol 37:26–29CrossRefGoogle Scholar
  15. 15.
    Roderick JH, Raquel AA, Collins JC (1983) Experimental dermatophytosis: the clinical and histopathologic features of a mouse model using Trichophyton quinckeanum (mouse favus). J Invest Dermatol 81:270–274CrossRefGoogle Scholar
  16. 16.
    Carlsten H, Holmdahl R, Tarkowski A (1991) Analysis of the genetic encoding of oestradiol suppression of delayed type hypersensitivity in (NZB × NZW) F1 mice. Immunology 73:186–190PubMedGoogle Scholar
  17. 17.
    Odds F, Ausma J, Gerven FV, Woestenborgh SF, Meerpoel L, Heeres J (2004) In vitro and in vivo activities of the novel azole antifungal agent R 12 6638. Antimicrob Agents Chemother 48(2):388–391PubMedCrossRefGoogle Scholar
  18. 18.
    Uchida K, Tanaka T, Yamaguchi H (2003) Achievement of complete mycological cure by topical antifungal agent NND-502 in guinea pig model of tinea pedis. Microbiol Immunol 47(2):143–146PubMedGoogle Scholar
  19. 19.
    Julian LJ, Luis P, Pedro I, Emilo PT (2005) Dermatophytosis with concurrent lesion in different locations. Prognostic and therapeutic significance. Enferm Infecc Microbiol Clin 23(4):191–193CrossRefGoogle Scholar
  20. 20.
    Arruda MSP, GIlioli S, Moreno FRV (2001) Experimental dermatophytosis in hamsters inoculated with T. mentagrophytes in cheek pouch. Rev Inst Med Trop Sao Paulo 43(1):29–32PubMedGoogle Scholar
  21. 21.
    Ghannoum MA, Hossain MA, Long L, Mohamed S, Reyes S, Mukarjee PK (2004) Evaluation of antifungal efficacy in an optimized animal model of T. mentagrophytes dermatophytosis. J Chemother 16(2):139–144PubMedGoogle Scholar
  22. 22.
    Hnilica KA, Medleau L (2002) Evaluation of topically applied enilconazole for the treatment of dermatophytosis in a persian cattery. Vet Dermatol 13(1):23–28PubMedCrossRefGoogle Scholar
  23. 23.
    Saunte DM, Hasselby JP, Brillawska A, Frimodt MN, Svejgaard EL, Linnemann D (2008) Experimental guinea pig model of dermatophytosis: a simple and useful tool for the evaluation of new diagnostic and antifungals. Med Mycol 46:303–313PubMedCrossRefGoogle Scholar
  24. 24.
    Jain N, Sharma M (2003) Broad spectrum antimycotic drug for the treatment of ringworm infection in human beings. Curr Sci 85(1):30–34Google Scholar
  25. 25.
    McGaw LJ, Eloff JN (2005) Screening of 16 poisonous plants for antibacterial, anthelminitic and cytotoxic activity in vitro. S Afr J Bot 71(3–4):302–306Google Scholar
  26. 26.
    Sharma GP, Raghubanshi AS, Singh JS (2005) Lantana invasion: an overview. Weed Biol Manag 5(4):157–165CrossRefGoogle Scholar
  27. 27.
    Hernandez T, Canales M, Avila JG, Duran A, Caballero J, de Vivar AR (2003) Ethnobotany and antibacterial activity of some plants used in traditional medicine of Zapotitlan de las Salinas, Pubelo (Mexico). J Ethnopharmacol 88:181–188PubMedCrossRefGoogle Scholar
  28. 28.
    Saleh M, Kamel A, Li X, Swaray J (1999) Antibacterial triterpenoids isolated from Lantana camara. Pharm Biol 37(1):63–66CrossRefGoogle Scholar
  29. 29.
    Rajakaruna N, Cory SH, Towers GHN (2002) Antimicrobial activity of plants collected from serpentine outcrops in Sri lanka. Pharm Biol 40(3):235–244CrossRefGoogle Scholar
  30. 30.
    Mukharjee PK, Leidich SD, Isham N, Leitner I, Ryder NS, Ghannoum MA (2003) Clinical Trichophyton rubrum strain exhibiting primary resistance to terbinafine. Antimicrob Agents Chemother 47(1):82–86CrossRefGoogle Scholar
  31. 31.
    Favre B, Ghannoum MA, Ryder NS (2004) Biochemical characterization of terbinafine resistant Trichophyton rubrum isolates. Med Mycol 42(6):525–529PubMedCrossRefGoogle Scholar

Copyright information

© Association of Microbiologists of India 2011

Authors and Affiliations

  • Bindu Sharma
    • 1
    Email author
  • Padma Kumar
    • 1
  • Suresh Chandra Joshi
    • 2
  1. 1.Laboratory of Plant Tissue Culture and Secondary Metabolites, Department of BotanyUniversity of RajasthanJaipurIndia
  2. 2.Laboratory of Reproductive Toxicology, Department of ZoologyUniversity of RajasthanJaipurIndia

Personalised recommendations