Indian Journal of Microbiology

, Volume 48, Issue 2, pp 279–286

Diversity of ‘benzenetriol dioxygenase’ involved in p-nitrophenol degradation in soil bacteria

  • Debarati Paul
  • Neha Rastogi
  • Ulrich Krauss
  • Michael Schlomann
  • Gunjan Pandey
  • Janmejay Pandey
  • Anuradha Ghosh
  • Rakesh K. Jain
Original Article

Abstract

Ring hydroxylating dioxygenases (RHDOs) are one of the most important classes of enzymes featuring in the microbial metabolism of several xenobiotic aromatic compounds. One such RHDO is benzenetriol dioxygenase (BtD) which constitutes the metabolic machinery of microbial degradation of several mono- phenolic and biphenolic compounds including nitrophenols. Assessment of the natural diversity of benzenetriol dioxygenase (btd) gene sequence is of great significance from basic as well as applied study point of view. In the present study we have evaluated the gene sequence variations amongst the partial btd genes that were retrieved from microorganisms enriched for PNP degradation from pesticide contaminated agriculture soils. The gene sequence analysis was also supplemented with an in silico restriction digestion analysis. Furthermore, a phylogenetic analysis based on the deduced amino acid sequence(s) was performed wherein the evolutionary relatedness of BtD enzyme with similar aromatic dioxygenases was determined. The results obtained in this study indicated that this enzyme has probably undergone evolutionary divergence which largely corroborated with the taxonomic ranks of the host microorganisms.

Keywords

Benzenetriol dioxygenase p-Nitrophenol Phylogenetic analysis 

Abbr

BtD

Benzenetriol dioxygenase enzyme

btd

Benzenetriol dioxygenase gene

PNP

p-nitrophenol

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Watanabe K (2001) Microorganisms relevant to bioremediation. Curr Opin Biotechnol 12:237–241PubMedCrossRefGoogle Scholar
  2. 2.
    Dua M, Singh A, Sethunathan N & Johri AK (2002) Biotechnology and bioremediation: successes and limitations. Appl Microbiol Biotechnol 59:143–152PubMedCrossRefGoogle Scholar
  3. 3.
    Timmis KN & Pieper DH (1999) Bacteria designed for bioremediation. Trends Biotechnol 17:200–204PubMedCrossRefGoogle Scholar
  4. 4.
    Watanabe K, Futamata H & Harayama S (2002) Understanding the diversity in catabolic potential of microorganisms for the development of bioremediation strategies. Antonie Van Leeuwenhoek 81:655–663PubMedCrossRefGoogle Scholar
  5. 5.
    Peres CM & Agathos SN (2000) Biodegradation of nitroaromatic pollutants: from pathways to remediation. Biotechnol Annu Rev 6:197–220PubMedCrossRefGoogle Scholar
  6. 6.
    Holliger C, Gaspard S, Glod G, Heijman C, Schumacher W, Schwarzenbach RP & Vazquez F (1997) Contaminated environments in the subsurface and bioremediation: organic contaminants. FEMS Microbiol Rev 20:517–523PubMedCrossRefGoogle Scholar
  7. 7.
    Takeo M, Yasukawa T, Abe Y, Niihara S, Maeda Y & Negoro S (2003) Cloning and characterization of a 4-nitrophenol hydroxylase gene cluster from Rhodococcus sp. PN1. J Biosci Bioeng 95:139–145PubMedGoogle Scholar
  8. 8.
    Hofmann KW, Knackmuss HJ & Heiss G (2004) Nitrite elimination and hydrolytic ring cleavage in 2,4,6-trinitrophenol (picric acid) degradation. Appl Environ Microbiol 70:2854–2860PubMedCrossRefGoogle Scholar
  9. 9.
    Nordin K, Unell M & Jansson JK (2005) Novel 4-chlorophenol degradation gene cluster and degradation route via hydroxyquinol in Arthrobacter chlorophenolicus A6. Appl Environ Microbiol 71:6538–6544PubMedCrossRefGoogle Scholar
  10. 10.
    Junca H & Pieper DH (2003) Amplified functional DNA restriction analysis to determine catechol 2,3-dioxygenase gene diversity in soil bacteria. J Microbiol Methods 55:697–708PubMedCrossRefGoogle Scholar
  11. 11.
    Kitagawa W, Kimura N & Kamagata Y (2004) A novel p-nitrophenol degradation gene cluster from a gram-positive bacterium, Rhodococcus opacus SAO101. J Bacteriol 186:4894–4902PubMedCrossRefGoogle Scholar
  12. 12.
    Spain JC (1995) Biodegradation of nitroaromatic compounds. Annu Rev Microbiol 49:523–555PubMedCrossRefGoogle Scholar
  13. 13.
    Chauhan A, Chakraborti AK & Jain RK (2000) Plasmid-encoded degradation of p-nitrophenol and 4-nitrocatechol by Arthrobacter protophormiae. Biochem Biophys Res Commun 270:733–740PubMedCrossRefGoogle Scholar
  14. 14.
    Meulenberg R, Pepi M & de Bont JA (1996) Degradation of 3-nitrophenol by Pseudomonas putida B2 occurs via 1,2,4-benzenetriol. Biodegradation 7:303–311PubMedCrossRefGoogle Scholar
  15. 15.
    Armengaud J, Timmis KN & Wittich RM (1999) A functional 4-hydroxysalicylate/hydroxyquinol degradative pathway gene cluster is linked to the initial dibenzo-p-dioxin pathway genes in Sphingomonas sp. strain RW1. J Bacteriol 181:3452–3461PubMedGoogle Scholar
  16. 16.
    Samanta SK, Chakraborti AK & Jain RK (1999) Degradation of phenanthrene by different bacteria: evidence for novel transformation sequences involving the formation of 1-naphthol. Appl Microbiol Biotechnol 53:98–107PubMedCrossRefGoogle Scholar
  17. 17.
    Samanta SK, Bhushan B, Chauhan A & Jain RK (2000) Chemotaxis of a Ralstonia sp. SJ98 toward different nitroaromatic compounds and their degradation. Biochem Biophys Res Commun 269:117–123PubMedCrossRefGoogle Scholar
  18. 18.
    Ghosh A, Paul D, Prakash D, Mayilraj S & Jain RK (2006) Rhodococcus imtechensis sp. nov., a nitrophenol-degrading actinomycete. Int J Syst Evol Microbiol 56:1965–1969PubMedCrossRefGoogle Scholar
  19. 19.
    Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W & Lipman DJ (1997) Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  20. 20.
    Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F & Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–82PubMedCrossRefGoogle Scholar
  21. 21.
    Retief JD (2000) Phylogenetic analysis using PHYLIP. Methods Mol Biol 132:243–258PubMedGoogle Scholar
  22. 22.
    Siew JP, Khan AM, Tan PT, Koh JL, Seah SH, Koo CY, Chai SC, Armugam A, Brusic V & Jeyaseelan K (2004) Systematic analysis of snake neurotoxins’ functional classification using a data warehousing approach. Bioinformatics 20:3466–3480PubMedCrossRefGoogle Scholar
  23. 23.
    Felsenstein J (1987) Estimation of hominoid phylogeny from a DNA hybridization data set. J Mol Evol 26:123–131PubMedCrossRefGoogle Scholar
  24. 24.
    Felsenstein J (2001) The troubled growth of statistical phylogenetics. Syst Biol 50:465–467PubMedCrossRefGoogle Scholar
  25. 25.
    Van de Peer Y & De Wachter R (1993) TREECON: a software package for the construction and drawing of evolutionary trees. Comput Appl Biosci 9:177–182PubMedGoogle Scholar
  26. 26.
    Saitou N & Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  27. 27.
    Wilson MS, Herrick JB, Jeon CO, Hinman DE & Madsen EL (2003) Horizontal transfer of phnAc dioxygenase genes within one of two phenotypically and genotypically distinctive naphthalene-degrading guilds from adjacent soil environments. Appl Environ Microbiol 69:2172–2181PubMedCrossRefGoogle Scholar
  28. 28.
    Devers M, Henry S, Hartmann A & Martin-Laurent F (2005) Horizontal gene transfer of atrazine-degrading genes (atz) from Agrobacterium tumefaciens St96-4 pADP1::Tn5 to bacteria of maize-cultivated soil. Pest Manag Sci 61:870–880PubMedCrossRefGoogle Scholar
  29. 29.
    Daubaras DL, Saido K & Chakrabarty AM (1996). Purification of hydroxyquinol 1,2-dioxygenase and maleylacetate reductase: the lower pathway of 2,4,5-trichlorophenoxyacetic acid metabolism by Burkholderia cepacia AC1100. Appl Environ Microbiol 62:4276–4279PubMedGoogle Scholar
  30. 30.
    Hatta T, Nakano O, Imai N, Takizawa N & Kiyohara H (1999) Cloning and sequence analysis of hydroxyquinol 1,2-dioxygenase gene in 2,4,6-trichlorophenol-degrading Ralstonia pickettii DTP0602 and characterization of its product. J Biosci Bioeng 87:267–272PubMedCrossRefGoogle Scholar
  31. 31.
    Murakami S, Okuno T, Matsumura E, Takenaka S, Shinke R & Aoki K (1999) Cloning of a gene encoding hydroxyquinol 1,2-dioxygenase that catalyzes both intradiol and extradiol ring cleavage of catechol. Biosci Biotechnol Biochem 63:859–865PubMedCrossRefGoogle Scholar

Copyright information

© Association of Microbiologists of India 2008

Authors and Affiliations

  • Debarati Paul
    • 1
  • Neha Rastogi
    • 1
  • Ulrich Krauss
    • 2
  • Michael Schlomann
    • 3
  • Gunjan Pandey
    • 1
  • Janmejay Pandey
    • 1
  • Anuradha Ghosh
    • 1
  • Rakesh K. Jain
    • 1
  1. 1.Institute of Microbial TechnologyChandigarhIndia
  2. 2.Institute for Molecular Enzyme Technology AG Directed Evolution (Eggert)Heinrich Heine University Duesseldorf Research Centre JuelichJuelichGermany
  3. 3.TU Bergakademie FreibergInterdisziplinäres Ökologisches ZentrumFreibergGermany

Personalised recommendations