The enzymatic basis for pesticide bioremediation

  • Colin Scott
  • Gunjan Pandey
  • Carol J. Hartley
  • Colin J. Jackson
  • Matthew J. Cheesman
  • Matthew C. Taylor
  • Rinku Pandey
  • Jeevan L. Khurana
  • Mark Teese
  • Chris W. Coppin
  • Kahli M. Weir
  • Rakesh K. Jain
  • Rup Lal
  • Robyn J. Russell
  • John G. Oakeshott
Review

Abstract

Enzymes are central to the biology of many pesticides, influencing their modes of action, environmental fates and mechanisms of target species resistance. Since the introduction of synthetic xenobiotic pesticides, enzymes responsible for pesticide turnover have evolved rapidly, in both the target organisms and incidentally exposed biota. Such enzymes are a source of significant biotechnological potential and form the basis of several bioremediation strategies intended to reduce the environmental impacts of pesticide residues. This review describes examples of enzymes possessing the major activities employed in the bioremediation of pesticide residues, and some of the strategies by which they are employed. In addition, several examples of specific achievements in enzyme engineering are considered, highlighting the growing trend in tailoring enzymatic activity to a specific biotechnologically relevant function.

Keywords

Bacterial enzymes Bioremediation Pesticides Xenobiotics 

References

  1. 1.
    Shapir N, Mongodin EF, Sadowsky MJ, Daugherty SC, Nelson KE and Wackett LP (2007) Evolution of catabolic pathways: Genomic insights into microbial s-triazine metabolism. J Bacteriol 189:674–682PubMedCrossRefGoogle Scholar
  2. 2.
    Jorgensen KS (2007) In situ bioremediation. Adv Appl Microbiol 61:285–305PubMedCrossRefGoogle Scholar
  3. 3.
    Alcalde M, Ferrer M, Plou FJ and Ballesteros A (2006) Environmental biocatalysis: from remediation with enzymes to novel green processes. Trends Biotechnol 24:281–287PubMedCrossRefGoogle Scholar
  4. 4.
    Sutherland TD, Horne I, Weir KM, Coppin CW, Williams MR, Selleck M, Russell RJ and Oakeshott JG (2004) Enzymatic bioremediation: From enzyme discovery to applications. Clinic Exper Pharmacol Physiol 31:817–821CrossRefGoogle Scholar
  5. 5.
    Barry GF and Kishore GM (1992) Glyphosate tolerant plants. Patent WO92/00377Google Scholar
  6. 6.
    Barry GF and Kishore GM (1998) Glyphosate tolerant plants. Patent US 5,776,760Google Scholar
  7. 7.
    Settembre EC, Dorrestein PC, Park JH, Augustine AM, Begley TP and Ealick SE (2003) Structural and mechanistic studies on ThiO, a glycine oxidase essential for thiamin biosynthesis in Bacillus subtilis. Biochem 42:2971–2981CrossRefGoogle Scholar
  8. 8.
    Joosten V and van Berkel WJH (2007) Flavoenzymes. Curr Opin Chem Biol 11:195–202PubMedCrossRefGoogle Scholar
  9. 9.
    Galan B, Diaz E, Prieto MA and Garcia JL (2000) Functional analysis of the small component of the 4-hydroxyphenylacetate 3-monooxygenase of Escherichia coli W: a prototype of a new flavin: NAD(P)H reductase subfamily. J Bacteriol 182:627–636PubMedCrossRefGoogle Scholar
  10. 10.
    Goebel G, Gorbach S, Knauf W, Rimpau RH and Huttenbach H (1982) Properties, effects, residues, and analytics of the insecticide endosulfan. Residue Rev 83:1–165PubMedGoogle Scholar
  11. 11.
    Sutherland TD, Horne I, Weir KM, Russell RJ and Oakeshott JG (2004) Toxicity and residues of endosulfan isomers. Reviews Environ Contamin Toxicol 183:99–113Google Scholar
  12. 12.
    Sutherland TD, Horne I, Lacey MJ, Harcourt RL, Russell RJ and Oakeshott JG (2000) Enrichment of an endosulfandegrading mixed bacterial culture. Appl Environ Microbiol 66:2822–2828PubMedCrossRefGoogle Scholar
  13. 13.
    Sutherland TD, Weir KM, Lacey MJ, Horne I, Russell RJ and Oakeshott JG (2002) Enrichment of a microbial culture capable of degrading endosulphate, the toxic metabolite of endosulfan. J Appl Microbiol 92:541–548PubMedCrossRefGoogle Scholar
  14. 14.
    Weir KM, Sutherland TD, Horne I, Russell RJ and Oakeshott JG (2006) A single monooxygenase, ese, is involved in the metabolism of the organochlorides endosulfan and endosulfate in an Arthrobacter sp. Appl Environ Microbiol 72: 3524–3530PubMedCrossRefGoogle Scholar
  15. 15.
    Sutherland TD, Horne I, Harcourt RL, Russell RJ and Oakeshott JG (2002) Isolation and characterization of a Mycobacterium strain that metabolizes the insecticide endosulfan. J Appl Microbiol 93:380–389PubMedCrossRefGoogle Scholar
  16. 16.
    Sutherland TD, Horne I, Russell RJ and Oakeshott JG (2002) Gene cloning and molecular characterization of a two-enzyme system catalyzing the oxidative detoxification of beta-endosulfan. Appl Environ Microbiol 68:6237–6245PubMedCrossRefGoogle Scholar
  17. 17.
    Werck-Reichhart D, Hehn A and Didierjean L (2000) Cytochromes P450 for engineering herbicide tolerance. Trends Plant Sci 5:116–123PubMedCrossRefGoogle Scholar
  18. 18.
    Urlacher VB, Lutz-Wahl S and Schmid RD (2004) Microbial P450 enzymes in biotechnology. Appl Microbiol Biotechnol 64:317–325PubMedCrossRefGoogle Scholar
  19. 19.
    Morant M, Bak S, Moller BL and Werck-Reichhart D (2003) Plant cytochromes P450: tools for pharmacology, plant protection and phytoremediation. Curr Opin Biotechnol 14:151–162PubMedCrossRefGoogle Scholar
  20. 20.
    Klingenberg, M. (2003) The dragging emergence of the P450 cytochrome. Arch Biochem Biophys 412:2PubMedCrossRefGoogle Scholar
  21. 21.
    Kawahigashi H, Hirose S, Ohkawa H and Ohkawa Y (2005) Transgenic rice plants expressing human CYP1A1 remediate the triazine herbicides atrazine and simazine. J Agric Food Chem 53:8557–8564PubMedCrossRefGoogle Scholar
  22. 22.
    Kawahigashi H, Hirose S, Ohkawa H, and Ohkawa Y (2007) Herbicide resistance of transgenic rice plans expressing human CYP1A1. Biotechnol Adv 25:75–84PubMedCrossRefGoogle Scholar
  23. 23.
    Yamada T, Ishige T, Shiota N, Inui H, Ohkawa H and Ohkawa Y (2002) Enhancement of metabolizing herbicides in young tubers of transgenic potato plants with the rat CYP1A1 gene. Theoret Appl Genet 105:515–520CrossRefGoogle Scholar
  24. 24.
    Hanioka N, Tatarazako N, Jinno H, Arizono K and Ando M (2000) Determination of cytochrome P450 1A activities in mammalian liver microsomes by high-performance liquid chromatography with fluorescence detection. J Chromatograph B 744:399–406CrossRefGoogle Scholar
  25. 25.
    Kawahigashi H, Hirose S, Ohkawa H and Ohkawa Y (2006) Phytoremediation of the herbicides atrazine and metolachlor by transgenic rice plants expressing human CYP1A1, CYP2B6, and CYP2C19. J Agric Food Chem 54:2985–2991PubMedCrossRefGoogle Scholar
  26. 26.
    Didierjean L, Gondet L, Perkins R, Lau SMC, Schaller H, O’Keefe DP and Werck-Reichhart D (2002) Engineering herbicide metabolism in tobacco and Arabidopsis with CYP76B1, a cytochrome P450 enzyme from Jerusalem artichoke. Plant Physiol 130:179–189PubMedCrossRefGoogle Scholar
  27. 27.
    Chen X, Christopher A, Jones JP, Bell SG, Guo Q, Xu F, Roa Z and Wong LL (2002) Crystal structure of the F87W/Y96F/V247L mutant of cytochrome P-450cam with 1,3,5-trichlorobenzene bound and further protein engineering for the oxidation of pentachlorobenzene and hexachlorobenezene. J Biol Chem 277:37519–37526PubMedCrossRefGoogle Scholar
  28. 28.
    Yan DZ, Lui H and Zhou NY (2006) Conversion of Sphingobium chlorophenolicum ATCC 39723 to a hexachlorobenzene degrader by metabolic engineering. Appl Environ Microbiol 72:2283–2286PubMedCrossRefGoogle Scholar
  29. 29.
    Yeh WK, Gibson DT and Liu TN (1977) Toluene dioxygenase: a multicomponent enzyme system. Biochem Biophys Res Comm 78:401–410PubMedCrossRefGoogle Scholar
  30. 30.
    Gibson DT, Yeh WK Liu TN and Subramanian V (1982) in “Oxygenases and Oxygen Metabolism” (Nozaki, M., Yamamoto, S., Ishimura, Y., Coon, M.J., Ernster, L., and Estabrook, R.W., eds) pp. 51–62, Academic Press, Inc., New YorkGoogle Scholar
  31. 31.
    Whited GM and Gibson DT (1991) Toluene-4-monooxygenase, a 3-component enzyme-system that catalyzes the oxidation of toluene to para-cresol in Pseudomonas mendocina KR1. J Bacteriol 173:3010–3016PubMedGoogle Scholar
  32. 32.
    Bui VP, Hansen TV, Stenstrom Y, Hudlicky T and Ribbons DW (2001) A study of substrate specificity of toluene dioxygenase in processing aromatic compounds containing benzylic and/or remote chiral centers. J Chem 25:116–124Google Scholar
  33. 33.
    Robertson JB, Spain JC, Haddock JD and Gibson DT (1992) Oxidation of nitrotoluenes by toluene dioxygenase — evidence for a monooxygenase reaction. Appl Environ Microbiol 58:2643–2648PubMedGoogle Scholar
  34. 34.
    Lang CC and Wackett LP (1997) Oxidation of aliphatic olefins by toluene dioxygenase: enzyme rates and product identification. J Bacteriol 179:3858–3865Google Scholar
  35. 35.
    Resnick SM, Lee K and Gibson DT (1996) Diverse reactions catalyzed by naphthalene dioxygenase from Pseudomonas sp strain NCIB 9816. J Indust Microbiol Biotechnol 17:438–457CrossRefGoogle Scholar
  36. 36.
    Subramanian V, Liu TN, Yeh WK, Narro M, and Gibson DT (1981) Purification and properties of NADH-ferredoxintol reductase — a component of toluene dioxygenase from Pseudomonas putida. J Biol Chem 256:2723–2730PubMedGoogle Scholar
  37. 37.
    Subramanian V, Liu TN, Yeh WK, Serdar CM, Wackett LP and Gibson DT (1985) Purification and properties of ferredoxintol — a component of toluene dioxygenase from Pseudomonas putida F1. J Biol Chem 260:2355–2363PubMedGoogle Scholar
  38. 38.
    Subramanian V, Liu TN, Yeh WK and Gibson DT (1979) Toluene dioxygenase — purification of an iron-sulfur protein by affinity-chromatography. Biochem Biophys Res Comm 91:1131–1139PubMedGoogle Scholar
  39. 39.
    Zylstra GJ and Gibson DT (1989) Toluene degradation by Pseudomonas putida F1 — nucleotide-sequence of the todc1c2BADE genes and their expression in Escherichiacoli. J Biol Chem 264:14940–14946PubMedGoogle Scholar
  40. 40.
    Parales RE, Huang R, Yu CL, Parales JV, Lee FKN, Lessner DJ, Ivkovic-Jensen MM, Liu W, Friemann R, Ramaswamy S, and Gibson DT (2005) Purification, characterization, and crystallization of the components of the nitrobenzene and 2-nitrotoluene dioxygenase enzyme systems. Appl Environ Microbiol 71:3806–3814PubMedCrossRefGoogle Scholar
  41. 41.
    Newman LM and Wackett LP (1995) Purification and characterization of toluene 2-monooxygenase from Burkholderia cepacia G4. Biochem 34:14066–14076CrossRefGoogle Scholar
  42. 42.
    Newman LM and Wackett LP (1997) Trichloroethylene oxidation by purified toluene 2-monooxygenase: products, kinetics, and turnover-dependent inactivation. J Bacteriol 197:90–96Google Scholar
  43. 43.
    Ferraro DJ, Gakhar L and Ramaswamy S (2005) Rieske business: Structure-function of Rieske non-heme oxygenases. Biochem Biophys Res Comm 338:175–190PubMedCrossRefGoogle Scholar
  44. 44.
    Taira K, Hirose J, Hayashid S and Furukawa K (1992) Analysis of bph operon from the polychlorinated biphenyldegrading strain of Pseudomonas pseudoalcaligenes KF707. J Biol Chem 267:8488–4853Google Scholar
  45. 45.
    Maeda T, Takahashi Y, Suenaga H, Suyama A, Goto M and Furukawa K (2001) Functional analyses of Bph-Tod hybrid dioxygenase, which exhibits high degradation activity toward trichloroethylene. J Biol Chem 276:29833–29838PubMedCrossRefGoogle Scholar
  46. 46.
    Furukawa K, Hirose J, Hayashida S and Nakamura K (1994) Efficient degradation of trichloroethylene by a hybrid aromatic ring dioxygenase. J Bacteriol 196:2121–2123Google Scholar
  47. 47.
    Ollis DL, Cheah E, Cygler M, Dijkstra B, Frolow F, Franken SM, Harel M, Remington SJ, Silman I, Schrag J, Sussman JL, Verschueren KHG and Goldman A (1992) The alpha/beta-hydrolase fold. Protein Eng 5:197–211PubMedCrossRefGoogle Scholar
  48. 48.
    Campbell PM, Newcomb RD, Russell RJ and Oakeshott JG (1998) Two different amino acid substitutions in the aliesterase, E3, confer alternative types of organophosphorus insecticide resistance in the sheep blowfly, Lucilia cuprina. Insect Biochem Mol Biol 28:139–150CrossRefGoogle Scholar
  49. 49.
    Hartley CJ, Newcomb RD, Russell RJ, Yong CG, Stevens JR, Yeates DK, La Salle J, and Oakeshott JG (2006) Amplification of DNA from preserved specimens shows blowflies were predapted for the rapid evolution of insecticide resistance. Proc Natl Acad Sci USA 103:8757–8762PubMedCrossRefGoogle Scholar
  50. 50.
    Heidari R, Devonshire AL, Campbell BE, Bell KL, Dorrian SJ, Oakeshott JG and Russell RJ (2004) Hydrolysis of organophosphorus insecticides by in vitro modified carboxylesterase E3 from Lucilia cuprina. Insect Biochem Mol Biol 34:353–363PubMedCrossRefGoogle Scholar
  51. 51.
    Newcomb RD, Campbell PM, Ollis DL, Cheah E, Russell RJ and Oakeshott JG (1997) A single amino acid substitution converts a carboxylesterase to an organophosphorus hydrolase and confers insecticide resistance on a blowfly. Proc Natl Acad Sci USA 94:7464–7468PubMedCrossRefGoogle Scholar
  52. 52.
    Heidari R, Devonshire AL, Campbell BE, Dorrian SJ, Oakeshott JG Russell RJ. (2005) Hydrolysis of pyrethroids by carboxylesterases from Lucilia cuprina and Drosophila melanogaster with active sites modified by in vitro mutagenesis Insect. Biochem Mol Biol 35:597–609CrossRefGoogle Scholar
  53. 53.
    Heikinheimo P, Goldman A, Jeffries C and Ollis DL (1999) Of barn owls and bankers: a lush variety of alpha/beta hydrolases Struct. Fold Des 7:R141–R146CrossRefGoogle Scholar
  54. 54.
    Nardini M and Dijkstra BW (1999) Alpha/beta hydrolase fold enzymes: the family keeps growing. Curr Opin Struct Biol 9:732–737PubMedCrossRefGoogle Scholar
  55. 55.
    Bugg TDH (2004) Diverse catalytic activities in the alpha beta-hydrolase family of enzymes: activation of H2O, HCN, H2O2, and O2. Bioorgan Chem 32:367–375CrossRefGoogle Scholar
  56. 56.
    Harcourt RL, Horne I, Sutherland TD, Hammock BD, Russell RJ and Oakeshott, JG (2002) Development of a simple and sensitive fluorimetric method for isolation of coumaphos-hydrolysing bacteria. Lett Appl Microbiol 34:263–268PubMedCrossRefGoogle Scholar
  57. 57.
    Serdar CM, Gibson, DT, Munnecke DM and Lancaster JH (1985) Enzymatic hydrolysis of organophosphates: cloning and expression of a parathion hydrolase gene from Pseudomonas diminuta. Biotechnol 3:367–371CrossRefGoogle Scholar
  58. 58.
    Mulbry WW, Karns JS, Kearney PC, Nelson JO, McDaniel CS and Wild JR (1986) Identification of a plasmid-borne parathion hydrolase gene from Flavobacterium sp. by southern hybridization with opd from Pseudomonas diminuta. Appl Environ Microbiol 51:926–930PubMedGoogle Scholar
  59. 59.
    Yang H, Carr PD, McLoughlin SY, Liu JW, Horne I, Qiu X, Jeffries CM, Russell RJ, Oakeshott JG and Ollis DL (2003) Evolution of an organophosphate-degrading enzyme: a comparison of natural and directed evolution. Protein Eng 16:135–145PubMedCrossRefGoogle Scholar
  60. 60.
    Jackson CJ, Carr PD, Kim HK, Liu JW, Herrald P, Mitic N, Schenk G, Smith CA and Ollis DL (2006) Anomalous scattering analysis of Agrobacterium radiobacter phosphotriesterase: the prominent role of iron in the heterobinuclear active site. Biochem J 397:501–508PubMedCrossRefGoogle Scholar
  61. 61.
    Jackson C, Kim HK, Carr PD, Liu JW and Ollis DL (2005) The structure of an enzyme-product complex reveals the critical role of a terminal hydroxide nucleophile in the bacterial phosphotriesterase mechanism. Biochim Biophys Acta 1752:56–64PubMedGoogle Scholar
  62. 62.
    Afriat L, Roodveldt C, Manco G and Tawfik DS (2006) The latent promiscuity of newly identified microbial lactonases is linked to a recently diverged phosphotriesterase. Biochem 45:13677–13686CrossRefGoogle Scholar
  63. 63.
    de Souza ML, Sadowsky MJ and Wackett LP (1996) Atrazine chlorohydrolase from Pseudomonas sp. strain ADP: gene sequence, enzyme purification, and protein characterization. J Bacteriol 178:4894–4900PubMedGoogle Scholar
  64. 64.
    Mulbry WW, Zhu H, Nour SM and Topp E (2002) The triazine hydrolase gene trzN from Nocardioides sp. strain C190: cloning and construction of gene-specific primers. FEMS Microbiol Lett 206:75–79PubMedCrossRefGoogle Scholar
  65. 65.
    Lai K, Stolowich NJ and Wild JR (1995) Characterization of P-S bond hydrolysis in organophosphorothioate pesticides by organophosphorus hydrolase. Arch Biochem Biophys 318:59–64PubMedCrossRefGoogle Scholar
  66. 66.
    Dumas DP, Durst HD, Landis WG, Raushel FM and Wild JR (1990) Inactivation of organophosphorus nerve agents by the phosphotriesterase from Pseudomonas diminuta. Arch Biochem Biophys 277:155–159PubMedCrossRefGoogle Scholar
  67. 67.
    Watkins LM, Mahoney HJ, McCulloch JK and Raushel FM (1997) Augmented hydrolysis of diisopropyl fluorophosphate in engineered mutants of phosphotriesterase. J Biol Chem 272:25596–25601PubMedCrossRefGoogle Scholar
  68. 68.
    Raveh L, Segall Y, Leader H, Rothschild N, Levanon D, Henis Y and Ashani Y (1992) Protection against tabun toxicity in mice by prophylaxis with an enzyme hydrolyzing organophosphate esters. Biochem Pharmacol 44:397–400PubMedCrossRefGoogle Scholar
  69. 69.
    Roodveldt C and Tawfik DS (2005) Shared promiscuous activities and evolutionary features in various members of the amidohydrolase superfamily. Biochem 44:12728–12736CrossRefGoogle Scholar
  70. 70.
    Roodveldt C and Tawfik, DS (2005) Directed evolution of phosphotriesterase from Pseudomonas diminuta for heterologous expression in Escherichia coli results in stabilization of the metal-free state. Protein Eng Des Sel 18:51–58PubMedCrossRefGoogle Scholar
  71. 71.
    Shim H, Hong SB and Raushel FM (1998) Hydrolysis of phosphodiesters through transformation of the bacterial phosphotriesterase. J Biol Chem 273:17445–17450PubMedCrossRefGoogle Scholar
  72. 72.
    Kutz FW, Wood PH and Bottimore DP (1991) Organochlorine pesticides and polychlorinated biphenyls in human adipose tissue. Rev Environ Contam Toxicol 120:1–82PubMedGoogle Scholar
  73. 73.
    Nagata Y, Nariya T, Ohtomo R, Fukuda M, Yano K and Takagi M (1993) Cloning and sequencing of a dehalogenase gene encoding an enzyme with hydrolase activity involved in the degradation of γ-hexachlorohexane in Pseudomonas paucimobilis. J Bacteriol 175:6403–6410PubMedGoogle Scholar
  74. 74.
    Negri A, Marco E, Damborsky J and Gago F (2007) Stepwise dissection and visualization of the catalytic mechanism of haloalkane dehalogenase LinB using molecular dynamics simulations and computer graphics. J Mol Graph Model [Epub ahead of print]Google Scholar
  75. 75.
    Nagata Y, Prokop Z, Sato Y, Jerabek P, Kumar A, Ohtsubo Y, Tsuda M and Damborsky J (2005) Degradation of β-hexachlorcyclohexane by haloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26. Appl Environ Microbiol 71:2183–2185PubMedCrossRefGoogle Scholar
  76. 76.
    Sharma P, Raina V, Kumari R, Shweta M, Dogra C, Kumari H, Kohler HPE, Holliger C and Lal R (2006) Haloalkane dehalogenase LinB is responsible for β-and δ-hexachlorocyclohexane transformation in Sphingobium indicum B90A. Appl Environ Microbiol 72:5720–5727PubMedCrossRefGoogle Scholar
  77. 77.
    Ito M, Prokop Z, Klvana M, Otsubo Y, Tsuda M, Damborsky J and Nagata Y (2007) Degradation of β-hexachlorocyclohexane by haloalkane dehalogenase LinB from γ-hexachlorocyclohexane-utalizing bacterium Sphingobium MI1205. Arch Microbiol [Epub ahead of print]Google Scholar
  78. 78.
    Prokop Z, Moninvoca M, Chaloupkova R, Klvana M, Nagata Y, Janssen DB and Damborsky (2003) Catalytic mechanism of the haloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26. J Biol Chem 278:45094–45100PubMedCrossRefGoogle Scholar
  79. 79.
    Mandelbaum RT, DL Allan and LP Wackett (1995) Isolation and characterization of a Pseudomonas sp. that mineralizes the S-triazine herbicide atrazine. Appl Environ Microbiol 61:1451–1457PubMedGoogle Scholar
  80. 80.
    Seffernick JL, de Souza ML, Sadowsky MJ and Wackett LP (2001) Melamine deaminase and atrazine chlorohydrolase: 98 percent identical but functionally different. J Bacteriol 183:2405–2410PubMedCrossRefGoogle Scholar
  81. 81.
    Mulbry WW, Zhu H, Nour SM and Topp E (2002) The triazine hydrolase gene trzN from Nocardioides sp. strain C190: cloning and construction of gene-specific primers. FEMS Microbiol Lett 206:75–79PubMedCrossRefGoogle Scholar
  82. 82.
    Strong LC, Rosendahl C, Johnson G, Andreina M, Sadowsky MJ and Wackett LP (2002) Arthrobacter aurescens TC1 metabolises diverse s-triazine ring compounds. Appl Environ Microbiol 68:5973–5980PubMedCrossRefGoogle Scholar
  83. 83.
    Shapir N, Pederson C, Gil O, Strong L, Seffernick J, Sadowsky MJ and Wackett LP (2006) TrzN from Arthrobacter aurescens TC1 is a zinc amidohydrolase. J bacteriol 188:5859–5864PubMedCrossRefGoogle Scholar
  84. 84.
    Shapir N, Johnson G, Andreina M, Sadowsky MJ and Wackett LP (2005) Substrate specificity and colorimetric assay for recombinant TrzN derived from Arthrobacter aurescens TC1. Appl Environ Microbiol 71:2214–2220PubMedCrossRefGoogle Scholar
  85. 85.
    Wang L, Samac DA, Shapir N, Wackett LP, Vance CP, Olszewskiand NE and Sadowsky MJ (2005) Biodegradation of atrazine in transgenic plants expressing a modified bacterial atrazine chlorohydrolase (atzA) gene. Plnt Biotechnol J 3:475–486CrossRefGoogle Scholar
  86. 86.
    Sawers G (1998) Biochemistry, physiology and molecular biology of glycyl radical enzymes. FEMS Microbiol Rev 22:543–551CrossRefGoogle Scholar
  87. 87.
    Nagata Y, Imai R, Sakai A, Fukuda M, Yano K and Takagi M (1993) Isolation and characterisation of Tn5-induced mutants of Pseudomonas paucimobilis UT26 defective in γ-hexachlorocyclohexane dehydrochlorinase (LinA). Biosci Biotechnol Biochem 57:703–709PubMedGoogle Scholar
  88. 88.
    Nagata Y, Mori K, Takagi M, Murzin AG and Damborsky J (2001) Identification of protein fold and catalytic residues of γ-hexachlorocyclohexane dehydrochlorinase LinA. Proteins 45:471–477PubMedCrossRefGoogle Scholar
  89. 89.
    Trantirek L, Hybkova K, Nagata Y, Murzin A, Ansorgova A, Sklenar V and Damborsky J (2001) Reaction mechanism and sterochemistry of γ-hexachlorocyclohexane dehydrochlorinase LinA. J Biol Chem 276:7734–7740PubMedCrossRefGoogle Scholar
  90. 90.
    Raina V, Suar M, Singh A, Prakash O, Dadhwal M, Gupta SK, Dogra C, Lawlor K, Lal S, van der Meer JR, Holliger C and Lal R (2007) Enhanced biodegradation of hexachlorocyclohexane (HCH) in contaminated soils via inoculation with Sphingobium indicum B90A. Biodegradation. [Epub ahead of print]Google Scholar
  91. 91.
    Rice GC, Goeddel DV, Cachianes G, Woronicz J, Chen EY, Williams SR and Leung DW (1992) Random PCR mutagenesis screening of secreted proteins by direct expression in mammalian cells. Proc Natl Acad Sci USA 89:5467–5471PubMedCrossRefGoogle Scholar
  92. 92.
    Stemmer WPC (1994) Rapid evolution of a protein in vitro by DNA shuffling. Nature 370:389–391PubMedCrossRefGoogle Scholar
  93. 93.
    Ostermeier M, Nixon AE, Shim JH and Benkovic SJ (1999) Combinatorial protein engineering by incremental truncation. Proc. Natl. Acad Sci USA 96:3562–3567PubMedCrossRefGoogle Scholar
  94. 94.
    Lutz S, Ostermeier M, Moore GL, Maranas CD and Benkovic (2001) Creating multiple-crossover DNA libraries independent of sequence identity. Proc Natl Acad Sci USA 98:11248–11253PubMedCrossRefGoogle Scholar
  95. 95.
    Herman A and Tawfik DS (2007) Incorporating Synthetic Oligonucleotides via Gene Reassembly (ISOR): a versatile tool for generating targeted libraries. Protein Eng Des Sel 20:219–226PubMedCrossRefGoogle Scholar
  96. 96.
    Reetz MT, Bocola M, Carballeira JD, Zha D and Vogel A (2005) Expanding the range of substrate acceptance of enzymes: combinatorial active-site saturation test. Angew Chem 117:4264–4268CrossRefGoogle Scholar
  97. 97.
    Raillard S, Krebber A, Chen Y, Ness JE, Bermudez E, Trinidad R, Fullem R, Davis C, Welch M, Seffernick J, Wackett LP, Stemmer WPC and Minshull J (2001) Novel enzyme activities and functional plasticity revealed by recombining highly homologous enzymes. Chem Biol 8:891–898PubMedCrossRefGoogle Scholar
  98. 98.
    Mencia M, Martinex-Ferri AI, Alcalde M and de Lorenzo V (2006) Identification of a γ-hexachlorocyclohexane dehydrochlorinase (LinA) variant with improved expression and solubility properties. Biocatal Biotrans 24:223–230CrossRefGoogle Scholar
  99. 99.
    Cho CM, Mulchadnani A and Chen W (2002) Bacterial cell surface display of organophosphorus hydrolase for selective screening of improved hydrolysis of organophosphate nerve agents. Appl Environ Microbiol 68:2026–2030PubMedCrossRefGoogle Scholar
  100. 100.
    Cho CM, Mulchadnani A and Chen W (2004) Altering the substrate specificity of organophosphorus hydrolase for enhanced hydrolysis of chlorpyrifos. Appl Environ Microbiol 70:4681–4685PubMedCrossRefGoogle Scholar
  101. 101.
    McLoughlin SY, Jackson C, Liu JW and Ollis, DL (2005) Increased expression of a bacterial phosphotriesterase in Escherichia coli through directed evolution. Protein Expr Purif 41:433–440PubMedCrossRefGoogle Scholar
  102. 102.
    Behrens MA, Mutlu N, Chakraborty S, Dumitru R, Jiang WZ, LaVallee BJ, Herman PL, Clemente TE, and Weeks DP (2007) Dicamba resistance: enlarging and preserving biotechnology-based weed management strategies. Science 316:1185–1188PubMedCrossRefGoogle Scholar
  103. 103.
    Herman PL, Behrens M, Chakraborty S, Chrastil BM, Barycki J and Weeks DP (2005) A Three-component Dicamba O-Demethylase from Pseudomonas maltophilia, Strain DI-6. J Biol Chem 26:24759–24767CrossRefGoogle Scholar
  104. 104.
    Wright T, Lira JM, Walsh TA, Merlo DJ, Jayakumar PS and Lin G. Novel herbicide resistance genes. Patent 2007 WO 2007/053482 A2Google Scholar

Copyright information

© Association of Microbiologists of India 2008

Authors and Affiliations

  • Colin Scott
    • 1
  • Gunjan Pandey
    • 1
  • Carol J. Hartley
    • 1
  • Colin J. Jackson
    • 1
  • Matthew J. Cheesman
    • 1
  • Matthew C. Taylor
    • 1
  • Rinku Pandey
    • 1
  • Jeevan L. Khurana
    • 1
  • Mark Teese
    • 1
  • Chris W. Coppin
    • 1
  • Kahli M. Weir
    • 1
  • Rakesh K. Jain
    • 2
  • Rup Lal
    • 3
  • Robyn J. Russell
    • 1
  • John G. Oakeshott
    • 1
  1. 1.CSIRO EntomologyCanberraAustralia
  2. 2.Institute of Microbial TechnologyChandigarhIndia
  3. 3.Department of ZoologyUniversity of DelhiDelhiIndia

Personalised recommendations