Advertisement

Novel Distributed Dynamic Backbone-based Flooding in Unstructured Networks

  • Saeed Saeedvand
  • Hadi S. AghdasiEmail author
  • Leili Mohammad Khanli
Article
  • 66 Downloads

Abstract

Resource discovery on different unstructured and dynamic networks such as grid, peer-to-peer, and cloud networks is an inevitable challenging issue. The primary method for resource discovery on the unstructured networks is flooding a query on the network. All existing flooding algorithms for unstructured networks generate almost high additional duplicated queries. This high duplication of the unstructured networks causes a lot of network traffic. This paper, therefore, proposes a novel flexible Distributed Dynamic backbone-based Flooding (DDBF) algorithm for distributed unstructured networks. This paper explores Grid middleware, Peer-to-Peer (P2P) paradigm, and cloud networks resource discovery requirements and it proposes flooding algorithm based on the P2P networks using simulation. To evaluate and prove DDBF algorithm we, first, evaluated it on four fixed network topologies along with two different query flooder distributions, then we evaluated it with one dynamic network topology. The performance of the proposed DDBF algorithm was assessed with five different metrics. The result showed a dramatic decrease in the number of engaged flooder nodes, the number of duplicated queries and consequently, network delay compared with the state-of-the-art algorithms.

Keywords

Resource Discovery Flooding Unstructured Dynamic Networks Peer-to-Peer Networks Distributed Algorithm 

Notes

References

  1. 1.
    Zarrin J, Aguiar RL, Barraca JP (2018) Resource discovery for distributed computing systems: A comprehensive survey. J Parallel Distrib Comput 113:127–166.  https://doi.org/10.1016/j.jpdc.2017.11.010 CrossRefGoogle Scholar
  2. 2.
    Kryukov A, Demichev A (2018) Decentralized Data Storages: Technologies of Construction. Program Comput Softw 44(5):303–315.  https://doi.org/10.1134/S0361768818050067 CrossRefGoogle Scholar
  3. 3.
    Trunfio P, Talia D, Papadakis H, Fragopoulou P, Mordacchini M, Pennanen M, Popov K, Vlassov V, Haridi S (2007) Peer-to-Peer resource discovery in grids: Models and systems. Futur Gener Comput Syst 23(7):864–878.  https://doi.org/10.1016/j.future.2006.12.003 CrossRefGoogle Scholar
  4. 4.
    Kang S, Kim T, Jeon H, Lee W, Kang S (2015) A healthcare information sharing scheme in distributed cloud networks. Clust Comput:1–6.  https://doi.org/10.1007/s10586-015-0488-y CrossRefGoogle Scholar
  5. 5.
    Hu W-C, Kaabouch N (2012) Sustainable ICTs and management systems for green computing. IGI Global,Google Scholar
  6. 6.
    Zhou J, Shi Z (2010) Unstructured P2P-enabled service discovery in the cloud environment. In: Intelligent Information Processing V, vol 340. Springer Berlin Heidelberg, pp 173–182. doi: https://doi.org/10.1007/978-3-642-16327-2_23 CrossRefGoogle Scholar
  7. 7.
    Lv Q, Cao P, Cohen E, Li K, Shenker S (2002) Search and replication in unstructured peer-to-peer networks. In: ICS, New York, NY, USA, ACM, pp 84–95Google Scholar
  8. 8.
    Crespo A, Garcia-Molina H (2002) Routing indices for peer-to-peer systems. Paper presented at the Distributed Computing Systems, 2002. Proceedings. 22nd International Conference onGoogle Scholar
  9. 9.
    Madan M, Mathur M (2014) Cloud network management model - A novel approach to manage cloud traffic. Int J Cloud Comput Serv Archit (IJCCSA) 4(5).  https://doi.org/10.5121/ijccsa.2014.4502 Google Scholar
  10. 10.
    Daswani S, Fisk A (2002) Gnutella UDP extension for scalable searches (GUESS)Google Scholar
  11. 11.
    Trunfioa P, Taliaa D, Papadakisb H, Fragopouloub P, Mordacchinic M, Pennanend M, Popove K, Vlassovf V, Haridif S (2007) Peer-to-Peer resource discovery in Grids: Models and systems. Futur Gener Comput Syst 23(7):864–878.  https://doi.org/10.1016/j.future.2006.12.003 CrossRefGoogle Scholar
  12. 12.
    Ripeanu M (2001) Peer-to-peer architecture case study: Gnutella network. In: Peer-to-Peer Computing, 2001. Proceedings. First International Conference on. IEEE, pp 99–100. doi: https://doi.org/10.1109/P2P.2001.990433
  13. 13.
    The gnutella protocol specification v0.4. http://rfc-gnutella.sourceforge.net/developer/stable. Accessed 01 Apr 2018
  14. 14.
    Gkantsidis C, Mihail M, Saberi A (2004) Random walks in peer-to-peer networks. Perform Eval P2P comput syst 63(3):241–263.  https://doi.org/10.1016/j.peva.2005.01.002 CrossRefGoogle Scholar
  15. 15.
    Cambazoglu BB, Varol E, Kayaaslan E, Aykanat C, Baeza-Yates R (2010) Query forwarding in geographically distributed search engines. In: SIGIR '10 Proceedings of the 33rd international ACM SIGIR conference on Research and development in information retrieval New York, NY, USA. ACM, pp 90–97. doi: https://doi.org/10.1145/1835449.1835467
  16. 16.
    Noghabia HB, Ismaila AS, Ahmeda AA, Khodaeib M (2012) Optimized query forwarding for resource discovery in unstructured peer-to-peer grids. Cybern Syst Int J 43(8):687–703.  https://doi.org/10.1080/01969722.2012.717860 CrossRefGoogle Scholar
  17. 17.
    Lee W, Kim T, Kang S, Kim H (2015) Revised P2P data sharing scheme over distributed cloud networks. In: Information Science and Applications. Lecture Notes in Electrical Engineering, vol 339. Springer Berlin Heidelberg, pp 165–171. doi: https://doi.org/10.1007/978-3-662-46578-3_20 Google Scholar
  18. 18.
    Cheng L, Wang C-L (2013) Network performance isolation for latency-sensitive cloud applications. Futur Gener Comput Syst 24(9):1073–1084.  https://doi.org/10.1016/j.future.2012.05.025 CrossRefGoogle Scholar
  19. 19.
    Wu D (2014) iCloudAccess: Cost-effective streaming of video games from the cloud with low latency. IEEE Trans Circuits Syst Video Technol 24(8):1405–1416.  https://doi.org/10.1109/TCSVT.2014.2302543 CrossRefGoogle Scholar
  20. 20.
    Shehab A, Elhoseny M, El Aziz MA, Hassanien AE (2018) Efficient schemes for playout latency reduction in P2P-VoD systems. In: Advances in Soft Computing and Machine Learning in Image Processing. Springer, pp 477–495. doi: https://doi.org/10.1007/978-3-319-63754-9_22 Google Scholar
  21. 21.
    Sen S, Wang J (2002) Analyzing peer-to-peer traffic across large networks. In: Proceedings of the 2nd ACM SIGCOMM Workshop on Internet measurment. ACM, pp 137–150. doi: https://doi.org/10.1145/637201.637222
  22. 22.
    Barjini H, Othman M, Ibrahim H, Udzir NI (2012) Shortcoming, problems and analytical comparison for flooding-based search techniques in unstructured P2P networks. Peer-to-Peer Networking and Applications 5:1):1–1)13.  https://doi.org/10.1016/j.jpdc.2017.11.010 CrossRefGoogle Scholar
  23. 23.
    Lv Q, Cao P, Cohen E, Li K, Shenker S (2002) Search and replication in unstructured peer-to-peer networks. In: Proceedings of the 16th international conference on Supercomputing. ACM, pp 84–95. doi: https://doi.org/10.1145/514191.514206
  24. 24.
    Aiello W, Chung F, Lu L (2000) A random graph model for massive graphs. In: Proceedings of the thirty-second annual ACM symposium on Theory of computing. Acm, pp 171–180. doi: https://doi.org/10.1145/335305.335326
  25. 25.
    Calvert KL, Doar MB, Zegura EW (1997) Modeling internet topology. IEEE Commun Mag 35(6):160–163.  https://doi.org/10.1109/35.587723 CrossRefGoogle Scholar
  26. 26.
    Foster I, Kesselman C, Tuecke S (2001) The anatomy of the grid: Enabling scalable virtual organizations. Int J High Perform Comput Appl 15(3):200–222.  https://doi.org/10.1177/109434200101500302 CrossRefGoogle Scholar
  27. 27.
    Kamvar SD, Schlosser MT, Garcia-Molina H (2003) The eigentrust algorithm for reputation management in p2p networks. In: Proceedings of the 12th international conference on World Wide Web. ACM, pp 640–651. doi: https://doi.org/10.1145/775152.775242
  28. 28.
    Darlagiannis V, Mauthe A, Steinmetz R (2004) Overlay design mechanisms for heterogeneous, large-scale, dynamic P2P systems. J Netw Syst Manag 12(3):371–395.  https://doi.org/10.1023/B:JONS.0000043686.04679.03 CrossRefGoogle Scholar
  29. 29.
    Budhkar S, Tamarapalli V (2018) Delay management in mesh-based P2P live streaming using a three-stage peer selection strategy. J Netw Syst Manag 26(2):401–425.  https://doi.org/10.1007/s10922-017-9420-5 CrossRefGoogle Scholar
  30. 30.
    Jararweha Y, Al-Ayyouba M, Darabseha A, Benkhelifab E, Voukc M, Rindos A (2016) Software defined cloud: Survey, system and evaluation. Futur Gener Comput Syst 58:56–74.  https://doi.org/10.1016/j.future.2015.10.015 CrossRefGoogle Scholar
  31. 31.
    Greenberg A, Hamilton J, Maltz DA, Patel P (2008) The cost of a cloud: Research problems in data center networks. ACM SIGCOMM Comput Commun Rev 39(1):68–73.  https://doi.org/10.1145/1496091.1496103 CrossRefGoogle Scholar
  32. 32.
    Margariti SV, Dimakopoulos VV (2015) On probabilistic flooding search over unstructured peer-to-peer networks. Peer-to-Peer Networking and Applications 8(3):447–458.  https://doi.org/10.1007/s12083-014-0267-1 CrossRefGoogle Scholar
  33. 33.
    Kalogeraki V, Gunopulos D, ZeinalipourYazti D (2002) A local search mechanism for PeertoPeer networks. In: CIKM '02 Proceedings of the eleventh international conference on Information and knowledge management, New York, NY, USA. ACM, pp 300–307. doi: https://doi.org/10.1145/584792.584842
  34. 34.
    Mark K, Manfred H (2006) Adding structure to Gnutella to improve search performance in a real-world deployment. Distributed Information Systems LaboratoryGoogle Scholar
  35. 35.
    Exarchakos G, Antonopoulos N (2007) Resource sharing architecture for cooperative heterogeneous P2P overlays. J Netw Syst Manag 15(3):311–334.  https://doi.org/10.1007/s10922-007-9069-6 CrossRefGoogle Scholar
  36. 36.
    Kim H, Kim Y, Kim K, Kang S (2008) Restricted path flooding scheme in distributed P2P overlay networks. Paper presented at the International Conference on Information Science and Security, Seoul, 10–12 JanGoogle Scholar
  37. 37.
    Baumann H, Crescenzi P, Fraigniaud P (2014) Flooding in dynamic graphs with arbitrary degree sequence. J Parallel Distrib Comput 74(5):2433–2437.  https://doi.org/10.1016/j.jpdc.2014.01.007 CrossRefGoogle Scholar
  38. 38.
    Purohit GN, Sharma U (2010) Constructing minimum connected dominating set: Algorithmic approach. International journal on applications of graph theory in wireless ad hoc networks and sensor networks (GRAPH-HOC) 2 (3). doi: https://doi.org/10.5121/jgraphoc.2010.2305 CrossRefGoogle Scholar
  39. 39.
    Zhang Z, Zhou J, Mo Y, Du D-Z (2016) Performance-guaranteed approximation algorithm for fault-tolerant connected dominating set in wireless networks. Paper presented at the The 35th Annual IEEE International Conference on Computer Communications, San Francisco, CA, USA, 10–14 April 2016Google Scholar
  40. 40.
    Guha S, Khuller S (1998) Approximation algorithms for connected dominating sets. Algorithmica 20(4):374–387.  https://doi.org/10.1007/PL00009201 MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Wu J, Li H (1999) On calculating connected dominating set for efficient routing in ad hoc wireless networks. Paper presented at the Proceedings of the 3rd In ternational Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications,Google Scholar
  42. 42.
    Nieberg T, Hurink J (2006) A ptas for the minimum dominating set problem in unit disk graphs. In: Approximation and Online Algorithms, vol 3879. Springer, pp 296–306. doi: https://doi.org/10.1007/11671411_23 CrossRefGoogle Scholar
  43. 43.
    Mohanty JP, Mandal C, Reade C, Das A (2016) Construction of minimum connected dominating set in wireless sensor networks using pseudo dominating set. Ad Hoc Netw 42:61–73.  https://doi.org/10.1016/j.adhoc.2016.02.003 CrossRefGoogle Scholar
  44. 44.
    Abid SA, Othman M, Shah N (2014) 3D P2P overlay over MANETs. Comput Netw 64:89–111.  https://doi.org/10.1016/j.comnet.2014.02.006 CrossRefGoogle Scholar
  45. 45.
    Rahmani M, Benchaïba M (2018) PCSM: an efficient multihop proximity aware clustering scheme for mobile peer-to-peer systems. J Ambient Intell Humaniz Comput:1–18.  https://doi.org/10.1007/s12652-018-0808-1 CrossRefGoogle Scholar
  46. 46.
    Rahmani M, Benchaba M, Seddiki M A Clustering-based Replication Strategy for Mobile P2P networks. In: 2018 International Conference on Applied Smart Systems (ICASS), 2018. IEEE, pp 1–6. doi: https://doi.org/10.1109/ICASS.2018.8651946
  47. 47.
    Shen X-J, Chang Q, Liu L, Panneerselvam J, Zha Z-J (2016) CCLBR: Congestion control-based load balanced routing in unstructured P2P systems. IEEE Syst J 12(1):802–813.  https://doi.org/10.1109/JSYST.2016.2558515 CrossRefGoogle Scholar
  48. 48.
    Hughes D, Coulson G, Walkerdine J (2005) Free riding on Gnutella revisited: the bell tolls? IEEE distrib syst online 6(6).  https://doi.org/10.1109/MDSO.2005.31 CrossRefGoogle Scholar
  49. 49.
    Zang C, Cui P, Faloutsos C, Zhu W (2018) On power law growth of social networks. IEEE Trans Knowl Data Eng.  https://doi.org/10.1109/TKDE.2018.2801844 CrossRefGoogle Scholar
  50. 50.
    Zegura E (1996) GT-ITM: Georgia tech internetwork topology models (software). Georgia Tech,” http://www.cc.gatech.edu/projects/gtitm. Accessed 01 May 2018
  51. 51.
    Breslau L, Cao P, Fan L, Phillips G, Shenker S (1999) Web caching and Zipf-like distributions: Evidence and implications. In: INFOCOM'99. Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE, IEEE, pp 126–134. doi:10.1109/INFCOM.1999.749260Google Scholar
  52. 52.
    Zhang L, Deng Y, Zhu W, Zhou J, Wang F (2015) Skewly replicating hot data to construct a power-efficient storage cluster. J Netw Comput Appl 50:168–179.  https://doi.org/10.1016/j.jnca.2014.06.005 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Electrical and Computer EngineeringUniversity of TabrizTabrizIran

Personalised recommendations