Advertisement

A multi-dimensional routing based approach for efficient communication inside partitioned social networks

  • Ahsan HussainEmail author
  • Bettahally N. Keshavamurthy
Article
  • 38 Downloads

Abstract

Social Networks (SNs) connect nodes from different geographical areas, keeping users updated about current affairs through message sharing. Natural calamities or deliberately imposed actions can cause Internet disconnections between geographical areas. This results in a SN partition which leads to communication loss between nodes inside the partitioned area. In this paper, we propose an extended Multi-Dimensional Routing (eMDR) algorithm using Greedy routing, which considers multiple attributes for routing. It improves the communication efficiency inside partitioned SNs. The performance of the proposed algorithm is validated by considering three dimensions/attributes, viz., social interest, geographical location and time-zones of social nodes on both real and synthetic SN datasets. The results of topological and routing probabilities for Chord and novel Social Interest Overlay networks, show considerable improvement in communication inside partitioned SNs.

Keywords

Social interest overlay networks Social network partitioning Greedy routing Multidimensional routing Social communications 

Notes

Acknowledgements

This research work is funded by SERB, MHRD, under Grant (EEQ/- 2016/000413) for Secure and Efficient Communication Inside Partitioned Social Overlay Networks project, currently going on at National Institute of Technology Goa, Ponda, India.

References

  1. 1.
    Travers J, Milgram S (1969) An experimental study of the small world problem. Sociometry 32:425–443CrossRefGoogle Scholar
  2. 2.
    Mei Li, Wang-Chien Lee, and Anand Sivasubramaniam. Semantic small world (2004) An overlay network for peer-to-peer search. In: Proceedings of the 12 th IEEE International Conference on Network Protocols, ICNP, pages 228–238. IEEEGoogle Scholar
  3. 3.
    Ding D, Conti M, Figueiredo R (2015) Impact of country-scale internet disconnection on structured and social p2p overlays. In: Proceedings of the 16 th IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), pages 1–9. IEEEGoogle Scholar
  4. 4.
    Gao L, Li M, Bonti A, Zhou W, Yu S (2013) Multi-dimensional routing protocol in human-associated delay-tolerant networks. IEEE Trans Mob Comput 12(11):2132–2144CrossRefGoogle Scholar
  5. 5.
    Saberi S, Trunfio P, Talia D, Fesharaki MN, Badie K (2010) Using social network and semantic overlay network approaches to share knowledge in distributed data mining scenarios. In: Proceedings of the International Conference on High Performance Computing and Simulation (HPCS), pages 536–544. IEEEGoogle Scholar
  6. 6.
    Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang DU (2006) Complex networks: structure and dynamics. Phys Rep 424(4):175–308MathSciNetCrossRefGoogle Scholar
  7. 7.
    Crespo A, Garcia-Molina H (2004) Semantic overlay networks for p2p systems. In: AP2PC, volume 3601, pages 1–13. SpringerGoogle Scholar
  8. 8.
    Sun W-j, Qiu H-m (2008) A social network analysis on blogospheres. In: Proceedings of the 15 th Annual International Conference on Management Science and Engineering, ICMSE, pages 1769–1773. IEEEGoogle Scholar
  9. 9.
    Mingxin Zhang. Social network analysis (2010) History, concepts, and research. In: Handbook of social network technologies and applications, pages 3–21. SpringerGoogle Scholar
  10. 10.
    Babu KS, Jena SK, Hota J, networks BMA s (2013) A generalization approach. Computers & Electrical Engineering 39(7):1947–1961CrossRefGoogle Scholar
  11. 11.
    Tsikerdekis M, Zeadally S (2014) Multiple account identity deception detection in social media using nonverbal behavior. IEEE Transactions on Information Forensics and Security 9(8):1311–1321CrossRefGoogle Scholar
  12. 12.
    Wang S, Lin H, Hsu C-H, Yang F (2016) Collaboration reputation for trustworthy web service selection in social networks. J Comput Syst Sci 82(1):130–143MathSciNetCrossRefGoogle Scholar
  13. 13.
  14. 14.
    Wang Y, Yun X, Li Y (2007) Analyzing the characteristics of gnutella overlays. In: Proceedings of the 4 th International Conference on Information Technology, ITNG'07, pages 1095–1100. IEEEGoogle Scholar
  15. 15.
    Rowstron A, Pastry PD (2001) Scalable, decentralized object location, and routing for large-scale peer-to-peer systems. In: IFIP/ACM International Conference on Distributed Systems Platforms and Open Distributed Processing, pages 329–350. SpringerGoogle Scholar
  16. 16.
    Zhao BY, Huang L, Stribling J, Rhea SC, Joseph AD, Tapestry JDK (2004) A resilient global-scale overlay for service deployment. IEEE Journal on selected areas in communications 22(1):41–53CrossRefGoogle Scholar
  17. 17.
    Kutzner K, Fuhrmann T (2005) Measuring large overlay networks: the overnet example. In: Kommunikation in Verteilten Systemen (KiVS), pages 193–204. SpringerGoogle Scholar
  18. 18.
    Marti S, Ganesan P, Sprout HG-M (2004) P2p routing with social networks. In: EDBT Workshops, volume 3268, pages 425–435. SpringerGoogle Scholar
  19. 19.
    Stoica I, Morris R, Liben-Nowell D, Karger DR, Frans Kaashoek M, Dabek F, Balakrishnan H (2003) Chord: a scalable peer-to-peer lookup protocol for internet applications. IEEE/ACM Transactions on Networking (TON) 11(1):17–32CrossRefGoogle Scholar
  20. 20.
    Li M, Lee W-C, Sivasubramaniam A, Lee DL (2004) A small world overlay network for semantic based search in p2p systems. In: Proceedings of the 2 nd Workshop on Semantics in Peer-to-Peer and Grid Computing, New York, USA, pages 71–90Google Scholar
  21. 21.
    Lua EK, Crowcroft J, Pias M, Sharma R, Lim S (2005) A survey and comparison of peer-to-peer overlay network schemes. IEEE Communications Surveys & Tutorials 7(2):72–93CrossRefGoogle Scholar
  22. 22.
    Xie J, Li Z, Chen G (2007) A semantic overlay network for unstructured peer-to-peer protocols. In: Proceedings of the International Conference on Parallel and Distributed Systems, volume 2, pages 1–8. IEEEGoogle Scholar
  23. 23.
    Zhang W, Zheng Q, Li H, Tian F (2012) An overlay multicast protocol for live streaming and delay-guaranteed interactive media. J Netw Comput Appl 35(1):20–28CrossRefGoogle Scholar
  24. 24.
    Lee C, Choi J, Kim E (2014) A popularity-aware semantic overlay for efficient peer-to-peer search. Advances in Electrical and Computer Engineering 14(4):105–108CrossRefGoogle Scholar
  25. 25.
    Pogkas I, Kriakov V, Chen Z, Delis A (2009) Adaptive neighborhood selection in peer-to-peer networks based on content similarity and reputation. Peer-to-peer networking and applications 2(1):37–59CrossRefGoogle Scholar
  26. 26.
    Korzun D, Gurtov A (2014) Hierarchical architectures in structured peer-to-peer overlay networks. Peer-to-Peer Networking and Applications 7(4):359–395CrossRefGoogle Scholar
  27. 27.
    Duan Z, Tian C, Zhou M, Wang X, Zhang N, Hongwei D, Wang L (2016) Two-layer hybrid peer-to-peer networks. Peer-to-Peer Networking and Applications:1–19Google Scholar
  28. 28.
    Liben-Nowell D, Novak J, Kumar R, Raghavan P, Tomkins A (2005) Geographic routing in social networks. Proc Natl Acad Sci U S A 102(33):11623–11628CrossRefGoogle Scholar
  29. 29.
    Leskovec J, Horvitz E (2014) Geospatial structure of a planetary-scale social network. IEEE Transactions on Computational Social Systems 1(3):156–163CrossRefGoogle Scholar
  30. 30.
    Jia S, Juste PS, Figueiredo RJ (2013) A multidimensional heuristic for social routing in peer-to-peer networks. In: Proceedings of the International Conference on Consumer Communications and Networking Conference (CCNC), pages 329–335. IEEEGoogle Scholar
  31. 31.
    Pan H, Crowcroft J, Yoneki E (2011) Bubble rap: social-based forwarding in delay-tolerant networks. IEEE Trans Mob Comput 10(11):1576–1589CrossRefGoogle Scholar
  32. 32.
    Xia F, Li L, Jedari B, Pis SKD (2016) A multi-dimensional routing protocol for socially-aware networking. IEEE Trans Mob Comput 15(11):2825–2836CrossRefGoogle Scholar
  33. 33.
    Zhu K, Li W, Xiaoming F (2014) Smart: a social-and mobile-aware routing strategy for disruption-tolerant networks. IEEE Trans Veh Technol 63(7):3423–3434CrossRefGoogle Scholar
  34. 34.
    Li J, Ning Z, Jedari B, Xia F, Lee I, Tolba A (2016) Geo-social distance-based data dissemination for socially aware networking. IEEE Access 4:1444–1453CrossRefGoogle Scholar
  35. 35.
    Dainotti A, Squarcella C, Aben E, Claffy KC, Chiesa M, Russo M, Pescape A (2011) Analysis of country-wide internet outages caused by censorship. In: Proceedings of the 2011 ACM SIGCOMM conference on Internet measurement conference, pages 1–18. ACMGoogle Scholar
  36. 36.
    Peter Mell, Richard Harang, and Assane Gueye. The resilience of the internet to colluding country induced connectivity disruptions. In Proceedings of the Workshop on Security of Emerging Networking Technologies, 2015CrossRefGoogle Scholar
  37. 37.
    Onus M, Richa AW (2011) Minimum maximum-degree publish-subscribe overlay network design. IEEE/ACM Trans Networking 19(5):1331–1343CrossRefGoogle Scholar
  38. 38.
    Gephi tool. The open graph viz platform, https://gephi.org /, 2016
  39. 39.
    Foursquare dataset. Using location-based services to get customers, https://archive.org/details/201309 foursquare dataset umn/, 2016
  40. 40.
    Levandoski JJ, Sarwat M, Eldawy A, Lars MFM (2012) A location-aware recommender system. In: Proceedings of the 28th International Conference on Data Engineering (ICDE), pages 450–461. IEEEGoogle Scholar
  41. 41.
    Sarwat M, Levandoski JJ, Eldawy A, Lars* MFM (2014) An efficient and scalable location-aware recommender system. IEEE Trans Knowl Data Eng 26(6):1384–1399CrossRefGoogle Scholar
  42. 42.
    Yang D, Zhang D, Chen L, Bingqing Q (2015) Nation telescope: monitoring and visualizing large-scale collective behavior in lbsns. J Netw Comput Appl 55:170–180CrossRefGoogle Scholar
  43. 43.
    Yang D, Zhang D, Bingqing Q (2016) Participatory cultural mapping based on collective behavior data in location-based social networks. ACM Transactions on Intelligent Systems and Technology (TIST) 7(3):30Google Scholar
  44. 44.
    Networkx. High-productivity software for complex networks, http://networkx.github.io , 2017
  45. 45.
    Sala A, Cao L, Wilson C, Zablit R, Zheng H, Zhao BY (2010) Measurement-calibrated graph models for social network experiments. In: Proceedings of the 19th international conference on World wide web, pages 861–870. ACMGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringNational Institute of Technology GoaFarmagudiIndia

Personalised recommendations