Peer-to-Peer Networking and Applications

, Volume 11, Issue 4, pp 808–820 | Cite as

A multi-vessels cooperation scheduling for networked maritime fog-ran architecture leveraging SDN

  • Tingting Yang
  • ZhengQi Cui
  • Rui Wang
  • Jian Zhao
  • Zhou Su
  • Ruilong Deng
Part of the following topical collections:
  1. Special Issue on Fog Computing on Wheels


In this paper, we investigated the scheduling problem of the vessel’s uploading data to the infostations through the maritime communication system and optimize the dispatching of data by Dynamic Programming method. Both the single-vessel scheduling and multi-vessels collaboration scheduling are considered. Specially, we have integrated SDN and Fog computing into maritime wideband communications system. Our goal is minimizing the total weight tardiness for single-machine scheduling scenario to achieve the minimized delay of weighted uploading packet. Single-machine total weight tardiness scheduling problem is subject to intermittent network connections, packet generation and due time limitation. The route of the ship is changeless, the duration of generation, due date of the data packet, as well as information on other schedules, is a priori known. The idea of time-capacity mapping is used to convert the problem of intermittent resource scheduling in the sea to continuous scheduling problem. We proposed a Dynasearch algorithm based on time-capacity mapping method, and the proposed algorithm is verified by MATLAB.


SDN Dynasearch scheduling Maritime networks 



This work was supported in part by Research Project for FY2017 of International Association of Maritime Universities, China Postdoctoral Science Foundation under Grant 2015T80238, Natural Science Foundation of China under Grant 61401057, Natural Science Foundation of Liaoning Province under Grant 201602083, Science and technology research program of Liaoning under Grant L2014213, Dalian science and technology project under Grant 2015A11GX018. The Fundamental Research Funds for the Central Universities under Grant 3132016318, 3132016007, 3132015004 and 01760325. Dalian high-level innovative talent project under Grant 2016RQ035, Open Research Project of the State Key Laboratory of Industrial Control Technology, Zhejiang University, China under Grant ICT170310.


  1. 1.
    Zhang Y, Ding F, Zhang L (2009) Analysis on the application and development of computer communication technology in marine communication. Tianjin navigation 3:49–51Google Scholar
  2. 2.
    D.W. communication LLC Inmarsat bgan service rates, single and dual sim data allowance plans,
  3. 3.
    Bekkadal F, Yang K (2010) Novel maritime communications technologies. In: Proceedings IEEE MMS Symposium, pp 338–341Google Scholar
  4. 4.
    Schrodl H, Wind S (2011) Requirements engineering for cloud computing. Communications and Computers: English and Chinese 8(9):707–715Google Scholar
  5. 5.
    Gai K, Li S (2012) Towards cloud computing: A literature review on cloud computing and its development trends. In: Fourth International Conference on Multimedia Information NETWORKING and Security, pp 142–146Google Scholar
  6. 6.
    Peng M, Yan S, Zhang K, Wang C (2016) Fog-computing-based radio access networks: issues and challenges. IEEE Netw 30(4):46–53CrossRefGoogle Scholar
  7. 7.
    Balasubramanian A, Levine B, Venkataramani A. (2007) Dtn routing as a resource allocation problem. In: ACM SIGCOMM 2007 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications, Kyoto, Japan, pp 373–384Google Scholar
  8. 8.
    Zhang C, Cui Y, Tang H, Wu J (2015) Software define network(sdn) research progress. J Softw 26 (1):62–81Google Scholar
  9. 9.
    Thomas RH, Schantz RE, Forsdick HC (1978) Network operating systems. In: Proceedings on Local Area Networks: An Advanced Course, pp 455–466Google Scholar
  10. 10.
    Yang T, Shen XS (2014) Maritime Wideband Communication Networks: Video Transmission Scheduling. Springer Publishing Company IncorporatedGoogle Scholar
  11. 11.
    Yang T, Liang H, Cheng N, Shen X (2013) Towards video packets store-carry-and-forward scheduling in maritime wideband communication. In: GLOBECOM 2013 - 2013 IEEE Global Communications Conference, pp 4032–4037Google Scholar
  12. 12.
    Maheswaran R, Ponnambalam SG (2003) An investigation on single machine total weighted tardiness scheduling problems. Int J Adv Manuf Technol 22(3):243–248CrossRefGoogle Scholar
  13. 13.
    Guang Feng D, Xin Tang L (2006) A dynasearch algorithm for single machine scheduling problem with maximum total weighted satisfaction. J Manag Sci 9(4):40–50Google Scholar
  14. 14.
    Eiselt HA, Sandblom CL (2004) Single Machine Scheduling. Springer, Berlin HeidelbergCrossRefzbMATHGoogle Scholar
  15. 15.
    Yang T, Liang H, Cheng N, Deng R (2015) Efficient scheduling for video transmissions in maritime wireless communication networks. IEEE Trans Veh Technol 64(9):4215–4229CrossRefGoogle Scholar
  16. 16.
    Congram RK, Potts CN, van de Velde SL (2002) An iterated dynasearch algorithm for the single-machine total weighted tardiness scheduling problem. Informs Journal on Computing 14(1):52–67Google Scholar
  17. 17.
    Zhu H, Dong M, Chang S, Zhu Y, Li M, Shen X (2013) Zoom: Scaling the mobility for fast opportunistic forwarding in vehicular networks. Proc IEEE INFOCOM 12(11):2832–2840Google Scholar
  18. 18.
    Zhu H, Chang S, Li M, Naik K (2011) Exploiting temporal dependency for opportunistic forwarding in urban vehicular networks. In: proceedings of IEEE INFOCOM, pp 2192–2200Google Scholar
  19. 19.
    Zhu H, Li M, Fu L, Xue G, Zhu Y, Ni LM (2011) Impact of traffic influxes: Revealing exponential intercontact time in urban vanets. IEEE Trans Parallel Distrib Syst 22(8):1258–1266CrossRefGoogle Scholar
  20. 20.
    Yin Y, Cheng TCE, Wan L, Wu CC, Liu J (2015) Two-agent single-machine scheduling with deteriorating jobs. Comput Ind Eng 81:177–185CrossRefGoogle Scholar
  21. 21.
    Wang W, Zhu K, Ying L, Tan J (2016) Maptask scheduling in mapreduce with data locality: Throughput and heavy-traffic optimality. IEEE/ACM Trans Networking 24(1):190–203CrossRefGoogle Scholar
  22. 22.
    Jain N, Menache I, Naor J, Yaniv J (2015) Near-optimal scheduling mechanisms for deadline-sensitive jobs in large computing clusters. ACM Trans Parallel Comput 2(1):1–29CrossRefGoogle Scholar
  23. 23.
    Dong M, Kimata T, Sugiura K, Zettsu K (2014) Quality-of-experience (QoE) in emerging mobile social networks. IEICE Trans 97(10):2606–2612CrossRefGoogle Scholar
  24. 24.
    Zhang H, Cheng P, Shi L, Chen J Optimal denial-of-service attack scheduling with energy constraint. In: IEEE Transactions on Automatic Control. doi: 10.1109/TAC.2015.2409905
  25. 25.
    Ota K, Dong M, Zhu H, Chang S, Shen X (2011) Traffic information prediction in urban vehicular networks: A correlation based approach. In: Proceedings IEEE WCNC, pp 1021–1025Google Scholar
  26. 26.
    Fang D, Su Z, Xu Q (2014) Analysis of data transmission based on the priority over grid structures. ICIC Express Letters, Part B: Applications 5(3):751–755Google Scholar
  27. 27.
    Zhang H, Cheng P, Shi L, Chen J (2013) Optimal dos attack policy against remote state estimation. In: Proceedings IEEE CDC, pp 5444–5449Google Scholar
  28. 28.
    Dong M, Ota K, Lin M, Tang Z, Du S, Zhu H (2014) Uav-assisted data gathering in wireless sensor networks. J Supercomput 70(3):1142–1155CrossRefGoogle Scholar
  29. 29.
    Xu Q, Su Z, Zhang K, Ren P, Shen X (2015) Epidemic information dissemination in mobile social networks with opportunistic links. IEEE Transactions on Emerging Topics in Computing 3:3CrossRefGoogle Scholar
  30. 30.
    Yan Q, Li M, Yang Z, Lou W, Zhai H (2012) Throughput analysis of cooperative mobile content distribution in vehicular network using symbol level network coding. IEEE J Sel Areas Commun 30(2):484–492CrossRefGoogle Scholar
  31. 31.
    Liang H, Cai LX, Huang D, Shen X, Peng D (2012) An smdp-based service model for interdomain resource allocation in mobile cloud networks. IEEE Trans Veh Technol 61(5):2222–2232CrossRefGoogle Scholar
  32. 32.
    Xiao F, Xie X, Jiang L, Sun L, Wang R Utility-aware data transmission scheme for delay tolerant networks. In: Peer-to-Peer Networking and Applications. doi: 10.1007/s12083-015-0354-y
  33. 33.
    Cheng N, Lu N, Zhang N, Mark J, Shen X (2013) Vehicle-assisted data delivery for smart grid: An optimal stopping approach. In: Proceedings IEEE ICC, pp 1–5Google Scholar
  34. 34.
    Shan M, Wu J, Peng D (2007) Particle swarm and ant colony algorithms hybridized for multi-mode resource-constrained project scheduling problem with minimum time lag. In: International Conference on Wireless Communications NETWORKING and Mobile Computing, pp 5898–5902Google Scholar
  35. 35.
    Congram RK, Potts CN, Van SL, De Velde (2002) An iterated dynasearch algorithm for the single-machine total weighted tardiness scheduling problem. Informs J Comput 14(1):52–67Google Scholar
  36. 36.
    Grosso A, Della Croce F, Tadei R (2004) An enhanced dynasearch neighborhood for the single-machine total weighted tardiness scheduling problem. Oper Res Lett 32(1):68–72Google Scholar
  37. 37.
    Jain S, Kumar A, Mandal S, Ong J, Poutievski L, Singh A, Venkata S, Wanderer J, Zhou J, Zhu M (2013) B4: experience with a globally-deployed software defined wan. Acm Sigcomm Computer Communication Review 43(4):3–14CrossRefGoogle Scholar
  38. 38.
    Hassas Yeganeh S, Ganjali Y (2012) Kandoo: a framework for efficient and scalable offloading of control applications. In: The Workshop on Hot Topics in Software Defined Networks, pp 19–24Google Scholar
  39. 39.
    Hong K, Lillethun D, Ramachandran U, Ottenwalder B, Koldehofe B (2013) Mobile fog: A programming model for large-scale applications on the internet of things. In: Proceedings ACM SIGCOMM, pp 15–20Google Scholar
  40. 40.
    Peng M, Li Y, Jiang J, Li J (2014) Heterogeneous cloud radio access networks: a new perspective for enhancing spectral and energy efficiencies. IEEE Wireless Commun 21(6):126–135CrossRefGoogle Scholar
  41. 41.
    Aazam M, Huh EN (2014) Fog computing and smart gateway based communication for cloud of things. In: International Conference on Future Internet of Things and Cloud, pp 464–470Google Scholar
  42. 42.
    Shankar Pathmasuntharam J, Kong P-Y, Zhou M-T, Ge Y, Wang H, Ang C-W, Su W, Harada H (2008) TRITON: High speed maritime mesh networks. In: Proceedings IEEE PIMRC, pp 1–5Google Scholar
  43. 43.
    Lin H-M, Ge Y, Pang A-C, Pathmasuntharam JS (2010) Performance study on delay tolerant networks in maritime communication environments. In: Proceedings IEEE OCEANS, pp 1–6Google Scholar
  44. 44.
    Kolios P, Lambrinos L (2012) Optimising file delivery in a maritime environment through inter-vessel connectivity predictions. In: Proceedings IEEE WiMob, pp 777–783Google Scholar
  45. 45.
    Zhou M-T, Hoang VD, Harada H, Pathmasuntharam JS, Haiguang W, Kong P-Y, Ang C-W, Ge Y, Wen S (2013) Triton: High-speed maritime wireless mesh network. IEEE Wireless Commun 20(5):134–142CrossRefGoogle Scholar
  46. 46.
    Yang T, Zheng Z, Liang H, Deng R, Cheng N, Shen X Green energy and content aware data transmissions in maritime wireless communication networks. IEEE Trans Intell Transp Syst. doi: 10.1109/TITS.2014.2343958
  47. 47.
    Yang T, Liang H, Cheng N, Shen X Efficient scheduling for video transmissions in maritime wireless communication networks. IEEE Trans Veh Technol. doi: 10.1109/TVT.2014.2361120
  48. 48.
    Liang H, Zhuang W (2012) Efficient on-demand data service delivery to high-speed trains in cellular/infostation integrated networks. IEEE J Sel Areas Commun 30(4):780–791CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Tingting Yang
    • 1
  • ZhengQi Cui
    • 1
  • Rui Wang
    • 1
  • Jian Zhao
    • 1
  • Zhou Su
    • 2
  • Ruilong Deng
    • 3
  1. 1.Navigation CollegeDalian Maritime UniversityDalianChina
  2. 2.School of Mechatronic Engineering and Automation, Shanghai UniversityShanghaiChina
  3. 3.Department of Electrical and Computer EngineeringUniversity of AlbertaEdmontonCanada

Personalised recommendations