Peer-to-Peer Networking and Applications

, Volume 10, Issue 6, pp 1304–1322 | Cite as

Two-layer hybrid peer-to-peer networks

  • Zhenhua Duan
  • Cong TianEmail author
  • Mengchu Zhou
  • Xiaobing Wang
  • Nan Zhang
  • Hongwei Du
  • Lei Wang


In this paper, we propose a two-layer hybrid P2P (HP2P) network architecture that improves both system efficiency and scalability while maintaining high stability. We present its architecture, data structures and operations, including lookup service, stabilization, as well as supernode selection. Theoretical analysis and a large number of simulations results show that HP2P has good scalability, high efficiency, and desired stability.


P2P Architecture Flooding DHT Chord 

Supplementary material

12083_2016_460_MOESM1_ESM.pdf (285 kb)
(PDF 285 KB)


  1. 1.
    Wolff R, Schuster A (2004) Association rule mining in peer-to-peer systems. IEEE Trans Syst Man Cybern B Cybern 34:2426–2438CrossRefGoogle Scholar
  2. 2.
    Shen H, Liu G (2013) A lightweight and cooperative multifactor considered file replication method in structured P2P systems. IEEE Trans Comput 62:2115–2130MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
  4. 4.
    Tu X, Jin H, Cao J, Guo S, Zheng L, Lv Z (2013) An efficient data scheduling scheme for P2P storage-constrained IPTV system. IEEE Trans Syst Man Cybern Syst 43:379–389CrossRefGoogle Scholar
  5. 5.
    Chen M, Ponec M, Sengupta S, Li J, Chou A (2012) Utility maximization in peer-to-peer systems with applications to video conferencing. IEEE/ACM Trans Networking 20:1681–1694CrossRefGoogle Scholar
  6. 6.
    Ghanea-Hercock A, Wang F, Sun Y (2006) Self-organizing and adaptive peer-to-peer network. IEEE Trans Syst Man Cybern B Cybern 36:1230–1236CrossRefGoogle Scholar
  7. 7.
    Pitoura E, Abiteboul S, Pfoser D, et al. (2003) DBGlobe: a service-oriented P2P system for global computing. ACM Sigmod Record 32:77–82CrossRefGoogle Scholar
  8. 8.
  9. 9.
    Blond S, Fessant F, Merrer E (2012) Choosing partners based on availability in P2P networks. ACM Trans Auton Adapt Syst 7(25)Google Scholar
  10. 10.
    LimeWire Website
  11. 11.
    Lewthwaite J (2012) FrostWire P2P forensic examinations[J]. Digit InvestigGoogle Scholar
  12. 12.
  13. 13.
    Chen H, Jin H, Luo X, Liu Y, Gu T, Chen K, Ni M (2012) BloomCast: efficient and effective full-text retrieval in unstructured P2P networks. IEEE Trans Parallel Distrib Syst 23:232–241CrossRefGoogle Scholar
  14. 14.
    Hsiao H, Su H (2012) On optimizing overlay topologies for search in unstructured peer-to-peer networks. IEEE Trans Parallel Distrib Syst 23:924–935CrossRefGoogle Scholar
  15. 15.
    Suto K, Nishiyama H, Kato N, Nakachi T, Fujii T, Takahara A (2013) THUP: a P2P network robust to churn and DoS attack based on bimodal degree distribution. IEEE J Sel Areas Commun 31:247–256CrossRefGoogle Scholar
  16. 16.
    Li J, Chao C (2010) An efficient P2P content distribution system based on altruistic demand and recoding dissemination. IEEE Trans Syst Man Cybern Syst Hum 40:1083–1093CrossRefGoogle Scholar
  17. 17.
    Stoica I, Morris R, Karger D, Kaashoek MF, Balakrishnan H (2001) Chord: a scalable peer-to-peer lookup service for Internet applications. In: Proceedings of the 2001 SIGCOMM conference, pp 149–160Google Scholar
  18. 18.
    Ratnasamy S, Francis P, Handley M, Karp R, Shenker S (2001) A scalable content-addressable network. In: Proceedings of the 2001 SIGCOMM conference, pp 161–172Google Scholar
  19. 19.
    Rowstron A, Druschel P (2001) Pastry: scalable, decentralized object location and routing for large-scale peer-to-peer systems. In: Proceedings of the 18th IFIP/ACM international conference on distributed systems platforms, pp 329–350Google Scholar
  20. 20.
    Zhao B, Kubiatowicz J, Joseph A (2001) Tapestry: an infrastructure for fault-tolerant wide-area location and routing, Report NO: CSD-01-1141, Computer Science DivisionGoogle Scholar
  21. 21.
    Mittal P, Borisov N (2012) Information leaks in structured peer-to-peer anonymous communication systems. ACM Trans Inf Syst Secur 15:267–278CrossRefGoogle Scholar
  22. 22.
    Giordanelli R, Mastroianni C, Meo M (2012) Bio-inspired P2P systems: the case of multidimensional overlay. ACM Trans Auton Adapt Syst 7(35)Google Scholar
  23. 23.
  24. 24.
    Cohen B (2005) The BitTorrent protocol specification[EB/OL].
  25. 25.
    Kulbak Y, Bickson D (2005) The eMule protocol specification[EB/OL],
  26. 26.
    Xu Z, Hu Y (2003) SBARC: a supernode based peer-to-peer file sharing system. In: Proceedings of ISCC 2003, pp 1053–1058Google Scholar
  27. 27.
    Ganesan P, Gummadi K, Garcia-Molina H (2004) Canon in G major: designing DHTs with hierarchical structure. In: Proceedings of the 24th International Conference on Distributed Computing Systems, pp 263–272Google Scholar
  28. 28.
    Peng Z, Duan Z, Qi J, Cao Y, Lv E (2007) HP2P: a hybrid hierarchical P2P network. In: Proceedings of the first international conference on the digital society, p 18Google Scholar
  29. 29.
    Lv E, Duan Z, Qi J, Cao Y, Peng Z (2007) Incorporating clusters into hybrid P2P network. In: Proceedings of the first international conference on the digital society, p 17Google Scholar
  30. 30.
    Cao Y, Duan ZH, Qi JJ, Peng Z, Lv ET (2006) Implementing chord for HP2P network. In: OTM workshops 2006, pp 1480–1489Google Scholar
  31. 31.
    Wang L, Duan ZH, Wang B (2008) The performance of HP2P. In: In the proceedings of ICPCA08, pp 959–964Google Scholar
  32. 32.
    Wang B, Duan ZH, Wang L (2008) Kapa: a file sharing system based on HP2P. In: Proceedings of ICIW08, pp 403–409Google Scholar
  33. 33.
    Glendenning L, Beschastnikh I, Krishnamurthy A, Anderson TE (2011) Scalable consistency in scatter. In: Proceedings of the 23rd SOSP, pp 15–28Google Scholar
  34. 34.
    Liang J, Kumar R, Ross KW Understanding KaZaA,
  35. 35.
    Garcés-Erice L, Biersack EW, Felber PA, Ross KW, Urvoy-Keller G (2003) Hierarchical peer-to-peer systems. World Scientific 13:543–657MathSciNetGoogle Scholar
  36. 36.
    Lu E, Huang Y, Lu S (2009) ML-Chord: a multi-layered P2P resource sharing model. J Netw Comput Appl 32:578– 588CrossRefGoogle Scholar
  37. 37.
    Castro M, Druschel P, Hu YC, Rowstron A (2002) Exploiting network proximity in peer-to-peer overlay networks, MSR-TR-2002-82Google Scholar
  38. 38.
    Doyen G, Nataf E, Festor O (2005) A hierarchical architecture for a distributed management of P2P networks and services. Ambient Netw 3775:257–268CrossRefGoogle Scholar
  39. 39.
    Voulgaris S, Jelasity M, Steen MV (2005) A robust and scalable peer-to-peer gossip protocol. Agents and Peer-to-Peer Computing 2872:47–58CrossRefzbMATHGoogle Scholar
  40. 40.
    Karger D, Lehman E, Leighton T, Levine M, Lewin D, Panigrahy R (1997) Consistent hashing and random trees: distributed caching protocols for relieving hot spots on the world wide web. In: Proceedings of the 29th annual ACM symposium on theory of computing, pp 654–663Google Scholar
  41. 41.
    Secure Hash Standard (1995) U. S. Department of Commerce/NIST. National Technical Information Service, SpringfieldGoogle Scholar
  42. 42.
    Lin MJ, Marzullo K, Masini S (2000) Gossip versus DeterministicallyConstrained flooding on small networks. Distrib Comput 1914:85–89zbMATHGoogle Scholar
  43. 43.

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Zhenhua Duan
    • 1
  • Cong Tian
    • 1
    Email author
  • Mengchu Zhou
    • 2
  • Xiaobing Wang
    • 1
  • Nan Zhang
    • 1
  • Hongwei Du
    • 3
  • Lei Wang
    • 1
  1. 1.Institute of Computing Theory and TechnologyXidian UniversityXi’anChina
  2. 2.Department of Electrical and Computer EngineeringNew Jersey Institute of TechnologyNewarkUSA
  3. 3.Department of Computer Science and TechnologyHarbin Institute of Technology Shenzhen Graduate SchoolShenzhenChina

Personalised recommendations