Peer-to-Peer Networking and Applications

, Volume 7, Issue 1, pp 66–85 | Cite as

The impact of mobility models on the performance of P2P content discovery protocols over mobile ad hoc networks

  • Hamideh Babaei
  • Mahmood Fathy
  • Reza Berangi
  • Morteza Romoozi


One of the challenges over mobile ad-hoc networks is content discovery. P2P content discovery techniques including structured and unstructured can be employed in MANETs by considering its special characteristics and limitations. The most important characteristic of MANETs is the mobility of the nodes which creates a dynamic topology. A novel framework is presented to evaluate the effect of mobility and its models on the resource discovery. By using several metrics, this framework is capable of evaluating the effect of mobility on the underlay structure and subsequent changes on the overlay structure. The results obtained from extensive simulation, presented here, clarify the significant role of the mobility models on the performance of P2P content discovery protocols. These results are supported by mathematical analysis of content discovery protocols.


Mobile Ad-hoc Networks P2P networks Mobility models Analysis framework P2P content discovery protocols Mathematical analysis Generalize random graph 



This research was financially supported by Iran Telecommunication Research Center (ITRC), as a Ph.D. thesis support program.


  1. 1.
    Haas ZJ, Deng J, Liang B, Papadimitratos P, Sajama S (2002) Wireless ad hoc networks. Wiley Encyclopedia of TelecommunicationsGoogle Scholar
  2. 2.
    Schollmeier R (2001) A definition of peer to peer networking for classification of peer-to-peer architecture and applications. In Proceedings of the First International Conference on Peer-to-Peer Computing (P2P '01). IEEE Computer Society, inkoping, Sweden, August 27–29, 2001Google Scholar
  3. 3.
    Androutsellis-Theotokis S, Spinellis D (2004) A survey of peer-to-peer content distribution technologies. ACM Comput Surv 36(4):335–371. doi: 10.1145/1041680.1041681 CrossRefGoogle Scholar
  4. 4.
    Oliveira LB, Siqueira IG, Loureiro AAF (2005) On the performance of ad hoc routing protocols under a peer-to-peer application. J Parallel Distr Comput 65(11):1337–1347. doi: 10.1016/j.jpdc.2005.05.023 CrossRefGoogle Scholar
  5. 5.
    Franciscani FP, Vasconcelos MA, Couto RP, Loureiro AAF (2005) (re)configuration algorithms for peer-to-peer over ad hoc networks. J Parallel Distr Comput 65(2):234–245. doi: 10.1016/j.jpdc.2004.09.007 CrossRefzbMATHGoogle Scholar
  6. 6.
    Hu YC, Das SM, Pucha H (2003) Exploiting the synergy between peer-to-peer and mobile ad hoc networks. In HotOS-IX: Ninth Workshop on Hot Topics in Operating Systems, pp 37–42Google Scholar
  7. 7.
    Ding G, Bhargava B (2004) Peer-to-peer file-sharing over mobile ad hoc networks. In 2th IEEE Annual Conference on Pervasive Computing and Communications Workshops, pp 104–108Google Scholar
  8. 8.
    Breslau L, Estrin D, Fall K, Floyd S, Heidemann J, Helmy A, Huang P, McCanne S, Varadhan K, Xu Y, Yu H (2000) Advances in network simulation. IEEE Comput 33(5):59–67. doi: 10.1109/2.841785 CrossRefGoogle Scholar
  9. 9.
    Jardosh AP, Belding-Royer EM, Almeroth KC, Suri S (2005) Real-world environment models for mobile network evaluation. IEEE Journal on Special Areas Commun 23(3):622–632. doi: 10.1109/JSAC.2004.842561 CrossRefGoogle Scholar
  10. 10.
    Bai F, Sadagopan N, Helmy A (2003) The IMPORTANT framework for analyzing the Impact of mobility on performance of rouTing protocols for Adhoc NeTworks, Elsevier. Ad Hoc Network 1(4):383–403. doi: 10.1016/S1570-8705(03)00040-4 CrossRefGoogle Scholar
  11. 11.
    Hong X, Gerla M, Pei G, Chiang CC (1999) A group mobility model for ad hoc wireless networks. In Proceedings of the 2nd ACM international workshop on Modeling, analysis and simulation of wireless and mobile systems (MSWiM '99). ACM, New York, NY, USA, 53–60. doi: 10.1145/313237.313248
  12. 12.
    Stoica I, Morris R, Liben-Nowell D, Karger DR, Kaashoek MF, Dabek F, Balakrishnan H (2003) Chord: a scalable peer-to-peer lookup protocol for internet applications. IEEE/ACM Trans Networking 11(1):17–32. doi: 10.1109/TNET.2002.808407 CrossRefGoogle Scholar
  13. 13.
    Gkantsidis C, Mihail M, Saberi A (2006) Random walks in peer-to-peer networks: algorithms and evaluation. Perform Eval 63(3):241–263. doi: 10.1016/j.peva.2005.01.002 CrossRefGoogle Scholar
  14. 14.
    Boukerche A, Zarrad A, Araujo R (2006) Smart Gnutella overlay formation for collaborative virtual environments over mobile ad-hoc networks. In Proceedings of the 10th IEEE international symposium on Distributed Simulation and Real-Time Applications (DS-RT '06). IEEE Computer Society, Washington, DC, USA, 143–156. doi: 10.1109/DS-RT.2006.6
  15. 15.
    Zheng Q, Hong X, Ray S, (2004) Recent advances in mobility modeling for mobile ad Hoc Network Research. In Proceedings of the 42nd annual Southeast regional conference (ACM-SE 42). ACM, New York, NY, USA, 70–75. doi: 10.1145/986537.986554
  16. 16.
    Newman MEJ, Strogatz SH, Watts DJ (2001) Random graphs with arbitrary degree distributions and their applications. Phys Rev E 64:026118. doi: 10.1103/PhysRevE.64.026118 CrossRefGoogle Scholar
  17. 17.
    Johnson DB, Maltz DA, Broch J (2001) DSR: the dynamic source routing protocol for multi-hop wireless ad hoc networks. In Ad Hoc Networking, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA 139–172Google Scholar
  18. 18.
    Perkins CE, Bhagwat P (1994) Highly dynamic destination sequenced distance vector routing (DSDV) for mobile computers, In Proceedings of the conference on Communications architectures, protocols and applications (SIGCOMM '94). ACM, New York, NY, USA, 234–244. doi: 10.1145/190314.190336
  19. 19.
    Perkins C E, Royer E M (1999) Ad hoc on-demand distance vector routing. In: 2nd IEEE Workshop on Mobile Computing System and Applications, 90–100Google Scholar
  20. 20.
    Broch J, Maltz DA, Johnson DB, Hu YC, Jetcheva J (1998) A performance comparison of multi-hop wireless ad hoc network routing protocols. In Proceedings of the Fourth Annual ACM/IEEE International Conference on Mobile Computing and Networking, ACM, October 1998Google Scholar
  21. 21.
    Hong X, Kwon T, Gerla M, Gu D, Pei G (2001) A mobility framework for ad hoc wireless networks. In Proceedings of the Second International Conference on Mobile Data Management (MDM '01), Springer-Verlag, London, UK, 185–196.Google Scholar
  22. 22.
    da Hora DN, Macedo DF, Nogueira JMS, Pujolle G (2007) Optimizing peer-to-peer content discovery over wireless mobile ad hoc networks. In: The Ninth IFIP/IEEE International Conference on Mobile and Wireless Communications Networks (MWCN), 6–10Google Scholar
  23. 23.
    Borg J (2003) A comparative study of ad hoc & peer to peer networks, Master’s thesis, University College LondonGoogle Scholar
  24. 24.
    Gerla M, Lindemann C, Rowstron A (eds.) (2005) Peer-to-Peer Mobile Ad Hoc Networks – New Research Issues, no. 05152 in Dagstuhl Seminar ProceedingsGoogle Scholar
  25. 25.
    Schollmeier R, Gruber Niethammer F (2003) Protocol for peer-to-peer networking in mobile environments. In 12th International Conference on Computer Communications and Networks (ICCCN 2003), 121–127Google Scholar
  26. 26.
    Lee U, Park JS, Yeh J, Pau G, Gerla M (2006) Code torrent: content distribution using network coding in vanet. In Proceedings of the 1st international workshop on Decentralized resource sharing in mobile computing and networking (MobiShare '06). ACM, New York, NY, USA, 1–5. doi: 10.1145/1161252.1161254
  27. 27.
    Mecella M, Angelaccio M, Krek A, Catarci T, Buttarazzi B, Dustdar S (2006) Workpad: an adaptive peer-to-peer software infrastructure for supporting collaborative work of human operators in emergency/disaster scenarios. In CTS’06: Proceedings of the International Symposium on Collaborative Technologies and Systems, IEEE Computer Society, Washington, DC, USA, 173–180Google Scholar
  28. 28.
    Oliveira LB, Siqueira I, Macedo DF, Loureiro AA, Nogueira JM (2005) Evaluation of peer-to-peer network content discovery techniques over mobile ad hoc networks. In IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), 51–56Google Scholar
  29. 29.
    da Hora DN, Macedo DF, Oliveira LB, Siqueira IG, Loureiro AAF, Nogueira JM, Pujolle G (2009) Enhancing peer-to-peer content discovery techniques over mobile ad hoc networks. Comput Commun 32:1445–1459. doi: 10.1016/j.comcom.2009.04.005 CrossRefGoogle Scholar
  30. 30.
    Romoozi M, Babaei H, Fathi M (2009) A cluster-based mobility model for intelligent nodes in Ad hoc Networks, ICCSA, LNCS 5592, Springer-Verlag Berlin Heidelberg, 804–817Google Scholar
  31. 31.
    de Berg M, van Kreveld M, Overmars M, Schwarzkopf O (2000) Computational geometry: algorithms and applications. Springer VerlagGoogle Scholar
  32. 32.
    Eichler S, Schroth C, Eberspächer J (2006) Car-to-car communication. In Proceedings of the VDE-Kongress - Innovations for Europe, 2006Aachen, GermanyGoogle Scholar
  33. 33.
    Rodgeers JL, Nicewander AW (1988) Thirteen ways to look at the correlation coefficient. American Statistician 42(1):59–66. doi: 10.2307/2685263 CrossRefGoogle Scholar
  34. 34.
    Rostami H, Habibi J (2007) Topology awareness of P2P overlay networks. J Concurrency Comput Pract Ex 19(7):999–1021. doi: 10.1002/cpe.v19:7 CrossRefGoogle Scholar
  35. 35.
    Aschenbruck N, Ernst R, Gerhards-Padilla E, Schwamborn M (2010) BonnMotion: a mobility scenario generation and analysis tool. In Proceedings of the 3rd International ICST Conference on Simulation Tools and Techniques (SIMUTools '10). ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), ICST, Brussels, Belgium, article51,10 pages. doi: 10.4108/ICST.SIMUTOOLS2010.8684
  36. 36.
    Held G (2004) Focus on the Cisco Aironet 350 wireless access point. Int J Netw Manag 14(1):3–7. doi: 10.1002/nem.487 CrossRefGoogle Scholar
  37. 37.
    Wu B, Kshemkalyani AD (2008) Analysis models for unguided search in unstructured P2P networks. Int J Ad Hoc Ubiquit Comput 3(4):255–263. doi: 10.1504/IJAHUC.2008.018911 CrossRefGoogle Scholar
  38. 38.
    Tang X, Xu J, Lee WC (2008) Analysis of TTL-based consistency in unstructured peer-to-peer networks. IEEE Trans Parallel Distributed Systems 19(12):1683–1694. doi: 10.1109/TPDS.2008.44v CrossRefGoogle Scholar
  39. 39.
    Gaeta R, Sereno M (2011) Generalized probabilistic flooding in unstructured peer-to-peer networks. IEEE Trans Parallel Distr Syst 22(12):2055–2062. doi: 10.1109/TPDS.2011.82 CrossRefGoogle Scholar
  40. 40.
    Leontiadis E, Dimakopoulos VV, Pitoura E (2004) Cache updates in a peer-to-peer network of mobile agents. In: Proceedings of the Fourth International Conference on Peer-to-Peer Computing (P2P '04), IEEE Computer Society, Washington, DC, USA, 10–17. doi: 10.1109/P2P.2004.12
  41. 41.
    Kant K (2003) An analytic model for peer to peer file sharing networks. In Proceedings of the International Communications Conference, Anchorage, AL, USA, May, 2003Google Scholar
  42. 42.
    Adamic LA, Lukose RM, Puniyani AR, Huberman BA (2001) Search in power-law networks. Phys Rev E 64:46135–46143CrossRefGoogle Scholar
  43. 43.
    Gaeta R, Balbo G, Bruell S, Gribaudo M, Sereno M (2005) A simple analytical framework to analyze search strategies in large-scale peer-to-peer networks. Perform Eval 62(1):1–16. doi: 10.1016/j.peva.2005.07.023 CrossRefGoogle Scholar
  44. 44.
    Pozar DM (1998) Microwave engineering, 2nd edn. WileyGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Hamideh Babaei
    • 1
  • Mahmood Fathy
    • 2
  • Reza Berangi
    • 2
  • Morteza Romoozi
    • 1
  1. 1.Department of Computer Engineering, Science and Research BranchIslamic Azad UniversityTehranIran
  2. 2.Department of Computer EngineeringIran University of Science and TechnologyTehranIran

Personalised recommendations