Peer-to-Peer Networking and Applications

, Volume 5, Issue 4, pp 412–427 | Cite as

Chams: Churn-aware overlay construction for media streaming



Overlay networks support a wide range of peer-to-peer media streaming applications on the Internet. The user experience of such applications is affected by the churn resilience of the system. When peers disconnect from the system, streamed data may be delayed or lost due to missing links in the overlay topology. In this paper, we explore a proactive strategy to create churn-aware overlay networks that reduce the potential of disruptions caused by churn events. We describe Chams, a middleware for constructing overlay networks that mitigates the impact of churn. Chams uses a “hybrid” approach—it implicitly defines an overlay topology using a gossip-style mechanism, while taking the reliability of peers into account. Unlike systems for overlay construction, Chams supports a variety of topologies used in media streaming systems, such as trees, multi-trees and forests. We evaluate Chams with different topologies and show that it reduces the impact of churn, while imposing only low computational and message overheads.


Application-level multicast Peer-to-peer systems Overlay networks Media streaming Churn resilience 


  1. 1.
    Allani M, Garbinato B, Pedone F, Stamenkovic M (2007) A gambling approach to scalable resource-aware streaming. In: Proceedings of SRDSGoogle Scholar
  2. 2.
    Allani M, Garbinato B, Pedone F (2009) Application layer multicast. In: Garbinato B, Miranda H, Rodrigues L (eds) Middleware for network eccentric and mobile applications, chapter 9Google Scholar
  3. 3.
    Allani M, Leitao J, Garbinato B, Rodrigues L (2010) Rasm: reliable algorithm for scalable multicast. In: Proceedings of PDPGoogle Scholar
  4. 4.
    Banerjee S, Bhattacharjee B, Kommareddy C (2002) Scalable application layer multicast. In: SIGCOMMGoogle Scholar
  5. 5.
    Birman KP, Hayden M, Ozkasap O, Xiao Z, Budiu M, Minsky Y (1999) Bimodal multicast. ACM Trans Comput Syst 17(2):41–88CrossRefGoogle Scholar
  6. 6.
    Carvalho N, Pereira J, Oliveira R, Rodrigues L (2007) Emergent structure in unstructured epidemic multicast. In: Proceedings of DSN, Edinburgh, UKGoogle Scholar
  7. 7.
    Castro M, Druschel P, Kermarrec AM, Nandi A, Rowstron A, Singh A (2003) Splitstream: high-bandwidth multicast in cooperative environments. In: Proceedings of SOSP, pp 298–313Google Scholar
  8. 8.
    Chawathe Y, McCanne S, Brewer EA (2000) RMX: reliable multicast for heterogeneous networks. In: INFOCOM, pp 795–804Google Scholar
  9. 9.
    Chu Y, Rao S, Zhang H (2000) A case for end system multicast. In: Proceedings of ACM sigmetricsGoogle Scholar
  10. 10.
    Cisco (2009) Visual networking indexGoogle Scholar
  11. 11.
    Ferreira M, Leitão J, Rodrigues L (2010) Thicket: a protocol for building and maintaining multiple trees in a P2P overlay. In: Proceedings of SRDSGoogle Scholar
  12. 12.
    Frey D, Guerraoui R, Kermarrec A-M, Monod M, Boris K, Martin M, Quéema V (2009) Heterogeneous gossip. In: Proceedings of middlewareGoogle Scholar
  13. 13.
    Garbinato B, Pedone F, Schmidt R (2004) An adaptive algorithm for efficient message diffusion in unreliable environments. In: Proceedings of IEEE DSNGoogle Scholar
  14. 14.
    Jannotti J, Gifford DK, Johnson KL, Kaashoek MF, O’Toole Jr JW (2000) Overcast: reliable multicasting with on overlay network. In: OSDIGoogle Scholar
  15. 15.
    Jelasity M, Babaoglu O (2005) T-Man: gossip-based overlay topology management. In: Proceedings of ESOAGoogle Scholar
  16. 16.
    Kermarrec AM, Massoulié L, Ganesh AJ (2003) Probabilistic reliable dissemination in large-scale systems. IEEE Trans Parallel Distrib Syst 14(3):248–258CrossRefGoogle Scholar
  17. 17.
    Kostić D, Rodriguez A, Albrecht J, Vahdat A (2003) Bullet: high bandwidth data dissemination using an overlay mesh. In: Proceedings of SOSPGoogle Scholar
  18. 18.
    Leitao J, Pereira J, Rodrigues L (2007) Epidemic broadcast trees. In: Proceedings of SRDSGoogle Scholar
  19. 19.
    Li HC, Clement A, Marchetti M, Kapritsos M, Robison L, Alvisi L, Dahlin M (2008) Flightpath: obedience vs choice in cooperative services. In: OSDIGoogle Scholar
  20. 20.
    Liu F, Lu X, Peng Y, Huang J (2005) An efficient distributed algorithm for constructing delay and degree-bounded application-level multicast tree. In: Proceedings of ISPAN, Washington, DC, USAGoogle Scholar
  21. 21.
    Malekpour A, Pedone F, Allani M, Garbinato B (2009) Streamline: an architecture for overlay multicast. In: Proceedings of NCAGoogle Scholar
  22. 22.
    Massoulié L, Kermarrec A-M, Ganesh AJ (2003) Network awareness and failure resilience in self-organising overlay networks. In: SRDSGoogle Scholar
  23. 23.
    Ponec M, Sengupta S, Chen M, Li J, Chou PA (2009) Multi-rate peer-to-peer video conferencing: a distributed approach using scalable coding. In: ICME, pp 1406–1413Google Scholar
  24. 24.
    Ratnasamy S, Handley M, Karp R, Shenker S (2001) Application-level multicast using content-addressable networks. In: NGC ’01, pp 14–29Google Scholar
  25. 25.
    Sripanidkulchai K, Ganjam A, Maggs BM, Zhang H (2004) The feasibility of supporting large-scale live streaming applications with dynamic application end-points. In: SIGCOMMGoogle Scholar
  26. 26.
    Tan G, Jarvis SA, Spooner DP (2006) Improving the fault resilience of overlay multicast for media streaming. In: DSN, pp 558–567Google Scholar
  27. 27.
    Tang C, Ward C (2005) GoCast: gossip-enhanced overlay multicast for fast and dependable group communication. In: Proceedings of DSNGoogle Scholar
  28. 28.
    Tian Y, Shen H, Ng K-W (2010) Improving reliability for application-layer multicast overlays. IEEE Trans Parallel Distrib Syst 21(8):1103–1116CrossRefGoogle Scholar
  29. 29.
    Veloso E, Almeida VAF, Meira Jr. W, Bestavros A, Jin S (2006) A hierarchical characterization of a live streaming media workload. IEEE/ACM Trans Netw 14(1):133–146CrossRefGoogle Scholar
  30. 30.
    Yang M, Fei Z (2004) A proactive approach to reconstructing overlay multicast trees. In: INFOCOMGoogle Scholar
  31. 31.
    Zhang B, Iosup A, Pouwelse J, Epema D (2010) The peer-to-peer trace archive: design and comparative trace analysis. In: Proceedings of the CoNEXT student workshopGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2012

Authors and Affiliations

  • Mouna Allani
    • 1
  • Benoît Garbinato
    • 2
  • Peter Pietzuch
    • 1
  1. 1.Imperial College LondonLondonUK
  2. 2.University of LausanneLausanneSwitzerland

Personalised recommendations