Peer-to-Peer Networking and Applications

, Volume 6, Issue 2, pp 213–232 | Cite as

p2poem: Function optimization in P2P networks

Article

Abstract

Scientists working in the area of distributed function optimization have to deal with a huge variety of optimization techniques and algorithms. Most of the existing research in this domain makes use of tightly-coupled systems that either have strict synchronization requirements or completely rely on a central server, which coordinates the work of clients and acts as a state repository. Quite recently, the possibility to perform such optimization tasks in a P2P decentralized network of solvers has been investigated and explored, leading to promising results. In order to improve and ease this newly addressed research area, we designed and developed p2poem (P2P Optimization Epidemic Middleware), that aims at bridging the gap between the issues related to the design and deployment of large-scale P2P systems and the need to easily deploy and execute optimization tasks in such a distributed environment.

Keywords

P2P distributed computing Distributed function optimization P2P applications 

References

  1. 1.
    Addis B, Cassioli A, Locatelli M, Schoen F (2008) Global optimization for the design of space trajectories. Optimization online eprint archive http://www.optimization-online.org/DB_HTML/2008/11/2150.html. Accessed 21 June 2012
  2. 2.
    Alba E, Luque G, Nieto JM, Ordóñez G, Leguizamón G (2007) MALLBA: a software library to design efficient optimization algorithms. IJICA 1(1):74–85CrossRefGoogle Scholar
  3. 3.
    Arenas MG, Collet P, Eiben AE, Jelasity M, Merelo JJ, Paechter B, Preuß M, Schoenauer M (2002) A framework for distributed evolutionary algorithms. In: Parallel Problem Solving from Nature—PPSN VII, vol 2439 of LNCS. Springer, pp 665–675Google Scholar
  4. 4.
    Battiti R, Brunato M, Mascia F (2008) Reactive search and intelligent optimization. Springer Publishing Company, IncorporatedGoogle Scholar
  5. 5.
    Berntsson J (2005) G2DGA: an adaptive framework for internet-based distributed genetic algorithms. In: Proc. of GECCO ’05. ACM, New York, pp 346–349Google Scholar
  6. 6.
    Biazzini M, Bánhelyi B, Montresor A, Jelasity M (2009) Distributed hyper-heuristics for real parameter optimization. In: Proc. of GECCO’09. Montreal, Québec, Canada, pp 1339–1346Google Scholar
  7. 7.
    Biazzini M, Bánhelyi B, Montresor A, Jelasity M (2009) Peer-to-Peer optimization in large unreliable networks with branch-and-bound and particle swarms. In: Applications of evolutionary computing. Springer, pp 87–92Google Scholar
  8. 8.
    Biazzini M, Montresor A (2010) Gossiping differential evolution: a decentralized heuristic for function optimization in P2P networks. In: Proceedings of the 16th International Conference on Parallel and Distributed Systems (ICPADS’10)Google Scholar
  9. 9.
    Biazzini M, Montresor A (2011) p2poem. http://p2poem.sf.net. Accessed 21 June 2012
  10. 10.
    Biazzini M, Montresor A, Brunato M (2008) Towards a decentralized architecture for optimization. In: Proc. of IPDPS’08. Miami, FLGoogle Scholar
  11. 11.
    Brunato M, Battiti R, Pasupuleti S (2006) A memory-based rash optimizer. In: Proc. of AAAI-06 workshop on heuristic search, memory based heuristics and their applications. Boston, MAGoogle Scholar
  12. 12.
    Burke E, Kendall G, Newall J, Hart E, Ross P, Schulenburg S (2003) Hyper-heuristics: an emerging direction in modern search technology. In: Handbook of metaheuristics. Springer, pp 457–474Google Scholar
  13. 13.
    Cahon S, Melab N, Talbi E-G (2004) Paradiseo: a framework for the reusable design of parallel and distributed metaheuristics. Journal of Heuristics 10(3):357–380CrossRefGoogle Scholar
  14. 14.
    Demers A et al (1987) Epidemic algorithms for replicated database maintenance. In: Proc. of the 6th ACM symposium on Principles of Distributed Computing (PODC’87). ACM Press, pp 1–12Google Scholar
  15. 15.
    Desell T, Magdon-Ismail M, Szymanski B, Varela C, Newberg H, Anderson D (2010) Validating evolutionary algorithms on volunteer computing grids. In: Eliassen F, Kapitza R (eds) Distributed applications and interoperable systems, vol 6115 of lecture notes in computer science. Springer, Berlin/Heidelberg, pp 29–41CrossRefGoogle Scholar
  16. 16.
    Gagne C, Parizeau M, Dubreuil M (2003) Distributed Beagle: an environment for parallel and distributed evolutionary computations. In: Proc. of the 17th int. symposium on high performance computing systems and applications. NRC Research Press, Sherbrooke, Québec, CanadaGoogle Scholar
  17. 17.
    Gomes CP, Selman B (2001) Algorithm portfolios. Artif Intell 126(1–2):43–62MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Hidalgo JI, Lanchares J, Fernández de Vega F, Lombrana D (2007) Is the island model fault tolerant? In: GECCO ’07. ACM, New York, pp 2737–2744CrossRefGoogle Scholar
  19. 19.
    Jelasity M, Montresor A, Babaoglu O (2005) Gossip-based aggregation in large dynamic networks. ACM Trans Comput Syst 23(3):219–252CrossRefGoogle Scholar
  20. 20.
    Jelasity M, Voulgaris S, Guerraoui R, Kermarrec A-M, van Steen M (2007) Gossip-based peer sampling. ACM Trans Comput Syst 25(3):8CrossRefGoogle Scholar
  21. 21.
    Jiménez Laredo J, Lombraña González D, Fernández de Vega F, García Arenas M, Merelo Guervós J (2011) A Peer-to-Peer approach to genetic programming. In: Silva S, Foster J, Nicolau M, Machado P, Giacobini M (eds) Genetic programming, vol 6621 of lecture notes in computer science. Springer, Berlin/Heidelberg, pp 108–117Google Scholar
  22. 22.
    Kennedy J, Eberhart RC (1995) Particle swarm optimization. IEEE int. conf. neural networks, pp 1942–1948Google Scholar
  23. 23.
    Kesselman C, Foster I (1999) The Grid: blueprint for a new computing infrastructure. Morgan KaufmannGoogle Scholar
  24. 24.
    Laredo J, Castillo P, Mora A, Merelo J (2008) Exploring population structures for locally concurrent and massively parallel evolutionary algorithms. In: IEEE Congress on Evolutionary Computation, 2008. (IEEE World Congress on Computational Intelligence), pp 2605–2612Google Scholar
  25. 25.
    Laredo JLJ, Castillo PA, Mora AM, Merelo JJ, Fernandes C (2008) Resilience to churn of a Peer-to-Peer evolutionary algorithm. Int J High Perform Syst Archit 1(4):260–268CrossRefGoogle Scholar
  26. 26.
    Laredo JLJ, Eiben AE, Schoenauer M, Castillo PA, Mora AM, de Vega FF, Guervós JJM (2007) Self-adaptive gossip policies for distributed population-based algorithms. CoRR, abs/cs/0703117Google Scholar
  27. 27.
    Laredo JLJ, Eiben EA, van Steen M, Castillo PA, Mora AM, Merelo JJ (2008) P2P evolutionary algorithms: a suitable approach for tackling large instances in hard optimization problems. In: Proc. of Euro-Par, vol 5168 of LNCS. Springer-Verlag, pp 622–631Google Scholar
  28. 28.
    Maron O, Moore AW (1997) The racing algorithm: model selection for lazy learners. Artif Intell Rev 11:193–225CrossRefGoogle Scholar
  29. 29.
    Melab N, Mezmaz M, Talbi E-G (2005) Parallel hybrid multi-objective island model in Peer-to-Peer environment. In: IPDPS ’05: proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)—Workshop 6. IEEE Computer Society, Washington, p 190.2Google Scholar
  30. 30.
    Montresor A (2011) Cloudware. http://cloudware.sf.net. Accessed 21 June 2012
  31. 31.
    Montresor A, Jelasity M (2009) Peersim: a scalable P2P simulator. In: Proc. of the 9th Int. conference on Peer-to-Peer (P2P’09). Seattle, WA, pp 99–100Google Scholar
  32. 32.
    Pittel B (1987) On spreading a rumor. SIAM J Appl Math 47(1):213–223MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Scriven I, Lewis A, Ireland D, Lu J (2008) Distributed multiple objective particle swarm optimisation using Peer-to-Peer networks. In: IEEE Congress on Evolutionary Computation (CEC)Google Scholar
  34. 34.
    Scriven I, Lewis A, Mostaghim S (2009) Dynamic search initialisation strategies for multi-objective optimisation in Peer-to-Peer networks. IEEE Congress on Evolutionary Computation, CEC ’09, pp 1515–1522Google Scholar
  35. 35.
    Storn R, Price K (1997) Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Talbi EG (2006) Parallel combinatorial optimization. John WileyGoogle Scholar
  37. 37.
    Wickramasinghe WRMUK, van Steen M, Eiben AE (2007) Peer-to-Peer evolutionary algorithms with adaptive autonomous selection. In: Proc. of GECCO’07. ACM Press, New York, pp 1460–1467Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2012

Authors and Affiliations

  1. 1.INRIA – Bretagne AtlantiqueCampus de BeaulieuRennes CedexFrance
  2. 2.Dipartimento di Ingegneria e Scienza dell’InformazioneUniversità degli Studi di TrentoTrentoItaly

Personalised recommendations