Advertisement

NodeWiz: Fault-tolerant grid information service

  • Sujoy Basu
  • Lauro Beltrão Costa
  • Francisco BrasileiroEmail author
  • Sujata Banerjee
  • Puneet Sharma
  • Sung-Ju Lee
Article

Abstract

Large scale grid computing systems may provide multitudinous services, from different providers, whose quality of service will vary. Moreover, services are deployed and undeployed in the grid with no central coordination. Thus, to find out the most suitable service to fulfill their needs, or to find the most suitable set of resources on which to deploy their services, grid users must resort to a Grid Information Service (GIS). This service allows users to submit rich queries that are normally composed of multiple attributes and range operations. The ability to efficiently execute complex searches in a scalable and reliable way is a key challenge for current GIS designs. Scalability issues are normally dealt with by using peer-to-peer technologies. However, the more reliable peer-to-peer approaches do not cater for rich queries in a natural way. On the other hand, approaches that can easily support these rich queries are less robust in the presence of failures. In this paper we present the design of NodeWiz, a GIS that allows multi-attribute range queries to be performed efficiently in a distributed manner, while maintaining load balance and resilience to failures.

Keywords

Grid information service Peer-to-peer K-d-tree Failure detection Availability 

Notes

Acknowledgements

This work has been developed in collaboration with HP Brazil R&D. Authors would like to thank Jonhnny Wesley Sousa Silva and Giovanni Farias da Silva for the help in running part of the experiments. Francisco Brasileiro thanks the support from CNPq - Brazil (grant 309033/2007-1).

References

  1. 1.
    Andrzejak A, Xu Z (2002) Scalable, efficient range queries for grid information services. In: Proceedings of the second IEEE international conference on peer-to-peer computing (P2P’02), Linköping University, Sweden. IEEE Computer Society Press, Silver Spring, pp 33–40. citeseer.ist.psu.edu/andrzejak02scalable.html Google Scholar
  2. 2.
    Balazinska M, Balakrishnan H, Karger D (2002) INS/Twine: a scalable peer-to-peer architecture for intentional resource discovery. In: Proceedings of the pervasive 2002Google Scholar
  3. 3.
    Basu S, Banerjee S, Sharma P, Lee SJ (2005) Nodewiz: peer-to-peer resource discovery for grids. Tech. Rep. HPL-2005-36, HP LabsGoogle Scholar
  4. 4.
    Bharambe AR, Agrawal M, Seshan S (2004) Mercury: supporting scalable multi-attribute range queries. In: Proceedings of the 2004 conference on applications, technologies, architectures, and protocols for computer communications (SIGCOMM’04). Portland, pp 353–366Google Scholar
  5. 5.
    Cai M, Frank MR, Chen J, Szekely PA (2003) MAAN: a multi-attribute addressable network for grid information services. In: Fourth international workshop on grid computing (GRID’03), pp 184–191Google Scholar
  6. 6.
    Cirne W, Brasileiro F, Andrade N, Costa L, Andrade A, Novaes R, Mowbray M (2006) Labs of the world, unite!!! J Grid Comput 4(3):225–246. doi:10.1007/s10723-006-9040-x zbMATHCrossRefGoogle Scholar
  7. 7.
    Czajkowski K, Kesselman C, Fitzgerald S, Foster IT (2001) Grid information services for distributed resource sharing. In: 10th IEEE international symposium on high performance distributed computing (HPDC’01). IEEE Computer Society, Silver Spring, pp 181–194Google Scholar
  8. 8.
    Ganesan P, Yang B, Garcia-Molina H (2004) One torus to rule them all: multi-dimensional queries in p2p systems. In: Proceedings of the WebDB 2004Google Scholar
  9. 9.
    PlanetLab (2009) Ganglia archives for PlanetLab. http://planetlab.millennium.berkeley.edu/
  10. 10.
    Globus (2009) Globus Toolkit. http://www.globus.org/toolkit/
  11. 11.
    Han J, Kamber M (2001) Data mining: concepts and techniques, chap. 8: cluster analysis. Morgan Kaufmann, San Mateo, pp 349–351Google Scholar
  12. 12.
    Harvey NJA, Jones MB, Saroiu S, Theimer M, Wolman A (2003) SkipNet: a scalable overlay network with practical locality properties. In: Proceedings of the USITS 2003Google Scholar
  13. 13.
    Huebsch R, Hellerstein JM, Lanham N, Loo BT, Shenker S, Stoica I (2003) Querying the internet with PIER. In: 19th international conference on very large databases (VLDB’03), pp 321–332Google Scholar
  14. 14.
    Iamnitchi A, Foster I (2001) On fully decentralized resource discovery in grid environments. In: Proceedings of the international workshop on grid computingGoogle Scholar
  15. 15.
    Iamnitchi A, Foster I (2003) A peer-to-peer approach to resource location in grid environments. In: Weglarz J, Nabrzyski J, Schopf J, Stroinski M (eds) Grid resource management. Kluwer, LondonGoogle Scholar
  16. 16.
    von Laszewski G, Fitzgerald S, Foster I, Kesselman C, Smith W, Tuecke S (1997) A directory service for configuring high-performance distributed computations. In Proceedings of the IEEE HPDC-6, pp 365–375Google Scholar
  17. 17.
    Li X, Kim YJ, Govindan R, Hong W (2003) Multi-dimensional range queries in sensor networks. In: Proceedings of the ACM SenSys 2003Google Scholar
  18. 18.
    Lima A, Cirne W, Brasileiro F, Fireman D (2006) A case for event-driven distributed objects. In: 8th international symposium on distributed objects and applications (DOA). Springer, Berlin Heidelberg New York, pp. 1705–1721. doi:10.1007/11914952_46 Google Scholar
  19. 19.
    Oppenheimer D, Albrecht J, Patterson D, Vahdat A (2004) Distributed resource discovery on planetlab with SWORD. In: Proceedings of the first workshop on real, large distributed systems (WORLDS 2004)Google Scholar
  20. 20.
    OurGrid (2009) OurGrid project. http://www.ourgrid.org/
  21. 21.
    Ramabhadran S, Ratnasamy S, Hellerstein JM, Shenker S (2004) Brief announcement: prefix hash tree. In: Proceedings of the 23rd annual ACM symposium on principles of distributed computing (PODC’04). ACM, New York, pp 368–368. doi:10.1145/1011767.1011823 Google Scholar
  22. 22.
    Raman R, Livny M, Solomon M (1998) Matchmaking: distributed resource management for high throughput computing. In: Proceedings of the IEEE HPDC-7. Chicago, ILGoogle Scholar
  23. 23.
    Schopf JM, Raicu I, Pearlman L, Miller N, Kesselman C, Foster I, D’Arcy M (2006) Monitoring and discovery in a web services framework: functionality and perform ance of globus toolkit mds4. Tech. rep., Argonne National LabsGoogle Scholar
  24. 24.
    Thain D, Tannenbaum T, Livny M (2005) Distributed computing in practice: the condor experience: research articles. Concurr Comput Pract Exper 17(2–4):323–356. doi:10.1002/cpe.v17:2/4 CrossRefGoogle Scholar
  25. 25.
    Wahl M, Howes T, Kille S (1997) Rfc 2251: lightweight directory access protocol (v3)Google Scholar
  26. 26.
    XMPP Standards Foundation (2007) Extensible messaging and presence protocol (XMPP). http://www.xmpp.org
  27. 27.
    Zhang C, Krishnamurthy A, Wang RY (2005) Brushwood: distributed trees in peer-to-peer systems. In: 4th international workshop on peer-to-peer systems. Lecture notes in computer science, vol 3640. Springer, IthacaGoogle Scholar
  28. 28.
    Zheng C, Shen G, Li S, Shenker S (2006) Distributed segment tree: support of range query and cover query over dht. In: 5th international workshop on peer-to-peer systems (IPTPS’06), Santa BarbaraGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • Sujoy Basu
    • 1
  • Lauro Beltrão Costa
    • 2
  • Francisco Brasileiro
    • 2
    Email author
  • Sujata Banerjee
    • 1
  • Puneet Sharma
    • 1
  • Sung-Ju Lee
    • 1
  1. 1.Hewlett-Packard LaboratoriesPalo AltoUSA
  2. 2.Universidade Federal de Campina GrandeCampina GrandeBrazil

Personalised recommendations