Advertisement

The importance of nonrandom and random trait patterns in phytoplankton communities: a case study from Lake Müggelsee, Germany

  • C. Torsten SeltmannEmail author
  • Benjamin M. Kraemer
  • Rita Adrian
ORIGINAL PAPER
  • 51 Downloads

Abstract

A fundamental challenge in ecology is to identify the processes which explain how species come to occupy diverse communities. There is uncertainty about whether community composition arises through deterministic processes, whereby trait differences between species make them more or less adapted to certain environmental conditions. We tested the capacity for deterministic processes to explain the long-term dynamics of phytoplankton community structure in Lake Müggelsee—a shallow and eutrophic lake in Berlin, Germany using a trait-based approach. We developed a null model representing random processes alone by generating a time series of random trait distributions derived from the observed long-term data. We determined the extent to which deterministic processes lead to nonrandom patterns in phytoplankton communities by comparing the resulting null-trait distributions with the observed trait distributions in the long-term data. We found that phytoplankton communities fell along a gradient from random to nonrandom trait distributions, suggesting that deterministic processes alone do not fully describe the community structure. Nonrandom patterns were observed in communities with high species richness and during late spring as well as early winter. But neither species richness nor seasonality explained nonrandom patterns consistently for different metrics and traits given the high relevance of random trait distribution patterns. Thus, deterministic and stochastic processes may be needed to fully explain the structure of phytoplankton communities under changing environmental conditions.

Keywords

Phytoplankton traits Nonrandom Trait distribution Niche theory Coexistence theory Null model Community ecology 

Notes

Acknowledgments

We thank all staff of the Leibniz-Institute of Freshwater Ecology and Inland Fisheries who have been involved in the collection and compilation of the long-term data set of Lake Müggelsee. We are especially grateful to Helgard Täuscher and Katrin Preuss for processing the phytoplankton data and their commitment to phytoplankton taxonomy and to Thomas Hintze for his commitment to the Müggelsee automatic research station. We thank Ulrike Scharfenberger, Silke R. Schmidt, Alena S. Gsell, Dennis Özkundakci, and Tom Shatwell for advice in methodology and helpful discussion during the development of this study. Comments by one anonymous reviewer improved the manuscript substantially.

Funding information

Basic funding for sampling and sample processing was provided by the IGB long-term ecological research program. This work received aditional support from the MANTEL (H2020-MSCA-ITN-2016) and the LimnoScenES projects within the Belmont Forum–BiodivERsA International Joint Call on “Scenarios of Biodiversity and Ecosystem Services”).

Supplementary material

12080_2019_424_MOESM1_ESM.docx (104 kb)
ESM 1 (DOCX 104 kb)

References

  1. Adler PB, HilleRisLambers J, Levine JM (2007) A niche for neutrality. Ecol Lett 10:95–104CrossRefGoogle Scholar
  2. Adrian R, Walz N, Hintze T, Hoeg S, Rusche R (1999) Effects of ice duration on plankton succession during spring in a shallow polymictic lake. Freshw Biol 41:621–632CrossRefGoogle Scholar
  3. Benincà E, Huisma J, Heerkloss R, Jöhnk KD, Branco P, van Nes EH, Scheffer M, Ellner SP (2008) Chaos in a long-term experiment with a plankton community. Nature 451:822–826CrossRefGoogle Scholar
  4. Bruggeman J (2011) A phylogenetic approach to the estimation of phytoplankton traits. J Phycol 47:52–65CrossRefGoogle Scholar
  5. Bruggeman J, Heringa J, Brandt BW (2009) PhyloPars: estimation of missing parameter values using phylogeny. Nucleic Acids Res 37:W179–W184CrossRefGoogle Scholar
  6. Chase JM (2010) Stochastic community assembly causes higher biodiversity in more productive environments. Science 328:1388–1391CrossRefGoogle Scholar
  7. Chase JM, Leibold MA (2003) Ecological niches: linking classical and contemporary approaches. University of Chicago Press, ChicagoGoogle Scholar
  8. Chase JM, Myers AM (2011) Disentangling the ipmortance of ecological niches from stochastic processes across scale. Phil Trans R Soc B 366:2351–2363CrossRefGoogle Scholar
  9. Chesson P (2000) Mechanisms of maintenance of species diversity. Annu Rev Ecol Syst 31:343–366CrossRefGoogle Scholar
  10. Chesson P, Huntley N (1997) The roles of harsh and fluctuating conditions in the dynamics of ecological communities. Am Nat 150(5):519–553CrossRefGoogle Scholar
  11. Connor EF, Simberloff D (1979) The assembly of species communities: chance or competition? Ecology 60(6):1132–1140CrossRefGoogle Scholar
  12. Conradi T, Vicky MT, Kollmann J (2017) Resource availability determines the importance of niche-based versus stochastic community assembly in grasslands. Oikos 126:1134–1141CrossRefGoogle Scholar
  13. Cornwell WK, Ackerly DD (2009) Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol Monogr 79(1):109–126CrossRefGoogle Scholar
  14. Cornwell WK, Schwilk DW, Ackerly DD (2006) A trait-based test for habitat filtering: convex hull volume. Ecology 87(6):1465–1471CrossRefGoogle Scholar
  15. Devercelli M, Scarabotti P, Mayora G, Schneider B, Giri F (2016) Unravelling the role of deterministic and stochasticity in structuring the phytoplankton metacommunity of the Paraná River floodplain. Hydrobiologia 764:139–156CrossRefGoogle Scholar
  16. Dray S, Dufour AB (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20CrossRefGoogle Scholar
  17. Driescher E, Behrendt H, Schellenberger G, Stellmacher R (1993) Lake Müggelsee and its environment—natural conditions and anthropogenic impacts. Int Rev Ges Hydrobio 78:327–343CrossRefGoogle Scholar
  18. Engen S, Bakke Ø, Islam A (1998) Demographic and environmental stochasticity—concepts and definitions. Biometrics 54:840–846CrossRefGoogle Scholar
  19. Ernest SKM, Brown JH, Thibault KM, White EP, Goheen JR (2008) Zero sum, the niche, and metacommunities: long-term dynamics of community assembly. Am Nat 172:E257–E269CrossRefGoogle Scholar
  20. Fisher VK, Mehta P (2014) The transition between the niche and neutral regimes in ecology. PNAS 111:13111–13116CrossRefGoogle Scholar
  21. Gerten D, Adrian R (2000) Climate-driven changes in spring plankton dynamics and the sensitivity of shallow polymictic lakes to the North Atlantic Oscillation. Limnol Oceanogr 45(5):1058–1066CrossRefGoogle Scholar
  22. Götzenberger L, de Bello F, Brathen KA, Davison J, Dubuis A, Guisan A, Leps J, Lindborg R, Moora M, Pärtel M, Pellissier L, Pottier J, Vittoz P, Zobel K, Zobel M (2012) Ecological assembly rules in plant communities-approaches, patterns and prospects. Biol Rev 87:111–127CrossRefGoogle Scholar
  23. Grinnell J (1917) The niche-relationships of the California thrasher. Auk 34:427–433CrossRefGoogle Scholar
  24. Hardin G (1960) Competitive exclusion principle. Science 131:1292–1297CrossRefGoogle Scholar
  25. Heino J, Tolkkinen M, Pirttilä AM, Asaila H, Mykrä H (2014) Microbial diversity and community-environment relationships in boreal streams. J Biogeogr 41:2234–2244CrossRefGoogle Scholar
  26. Hill MO, Smith AJE (1976) Principal component analysis of taxonomic data with multistate discrete characters. Taxon 25:249–255CrossRefGoogle Scholar
  27. HilleRisLambers J, Adler PB, Harpole WS, Levine JM, Mayfield MM (2012) Rethinking community assembly through the lens of coexistence theory. Annu Rev Ecol Evol Syst 43:227–248CrossRefGoogle Scholar
  28. Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton, OxfordGoogle Scholar
  29. Huber V, Adrian R, Gerten D (2008) Phytoplankton reponse to climate warming modified by trophic state. Limnol Oceanogr 53:1–13CrossRefGoogle Scholar
  30. Huber V, Wagner C, Gerten D, Adrian R (2012) To bloom or not to bloom: contrasting responses of cyanobacteria to recent heat waves explained by critical thresholds of abiotic drivers. Oecologia 169:245–256CrossRefGoogle Scholar
  31. Hutchinson GE (1957) Concluding remarks. Cold Spring Harb Symp Quant Biol 22:415–427CrossRefGoogle Scholar
  32. Hutchinson GR (1961) The paradox of the plankton. Am Nat 95:137–145CrossRefGoogle Scholar
  33. Klais R, Norros V, Lehtinen S, Tamminen T, Olli K (2017) Community assembly and drivers of phytoplankton functional structure. Funct Ecol 31:760–767CrossRefGoogle Scholar
  34. Köhler J, Hilt S, Adrian R, Nicklisch A, Kozerski HP, Walz N (2005) Long-term response of a shallow, moderately flushed lake to reduced external phosphorus and nitrogen loading. Freshw Biol 50:1639–1650CrossRefGoogle Scholar
  35. Kraft NJB, Valencia R, Ackerly DD (2008) Functional traits and niche-based tree community assembly in an amazonian forest. Science 322:580–582CrossRefGoogle Scholar
  36. Kraft NJB, Adler PB, Godoy O, James EC, Fuller S, Levine JM (2014) Community assembly, coexistence and the environmental filtering metaphor. Funct Ecol 29:592–599CrossRefGoogle Scholar
  37. Lande R, Engen S, Saether BE (2003) Stochastic population dynamics in ecology and conservation. Oxford University Press, OxfordCrossRefGoogle Scholar
  38. Levine SN, Borchardt MA, Braner M, d. Shambaugh A (1999) The impact of zooplankton grazing on pyhtoplankton species composition and biomass in Lake Champlain (USA-Canada). J Great Lakes Res 25:61–77CrossRefGoogle Scholar
  39. Litchman E, Klausmeier CA (2008) Trait-based community ecology of phytoplankton. Annu Rev Ecol Evol Syst 39:615–639CrossRefGoogle Scholar
  40. Masuda Y, Yamanaka Y, Hirata T, Nakano H (2016) Competition and community assemblage dynamics within a phytoplankton functional group: simulation using an eddy-resolving model to disentangle deterministic and random effects. Ecol Model 343:1–14CrossRefGoogle Scholar
  41. May RM, MacArthur RH (1972) Niche overlap as a function of environmental variability. Proc Natl Acad Sci U S A 69:1109–1113CrossRefGoogle Scholar
  42. Mayfield MM, Levine JM (2010) Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol Lett 13:1085–1093CrossRefGoogle Scholar
  43. Mutshinda CM, Finkel ZV, Widdicombe CE, Irwin AJ (2016) Ecological equivalence of species within phytoplankton functional groups. Funct Ecol 30:1714–1722CrossRefGoogle Scholar
  44. Özkundakci D, Gsell AS, Hintze T, Täuscher H, Adrian R (2016) Winter severity determines functional trait composition of phytoplankton in seasonally ice-covered lakes. Glob Chang Biol 22:284–298CrossRefGoogle Scholar
  45. R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical ComputingGoogle Scholar
  46. Scheffer M, van Nes EH (2006) Self-organized similarity, the evolutionary emergence of groups of similar species. PNAS 103:6230–6235CrossRefGoogle Scholar
  47. Scheffer M, Rinaldo S, Huisman J, Weissing FJ (2003) Why plankton communities have no equilibrium: solutions to the paradox. Hydrobiologie 491:9–18CrossRefGoogle Scholar
  48. Schmidt SR, Lischeid G, Hintze T, Adrian R (2018) Disentangling limnological processes in the time-frequency domain. Limnol Oceanogr 9999:1–18Google Scholar
  49. Soininen J, Heino J (2007) Variation in niche parameters along a diversity gradient of unicellular eukaryote assemblages. Protest 158:181–191CrossRefGoogle Scholar
  50. Soininen J, Heino J, Lappalainen J, Virtanen R (2011) Exanding the ecological niche approach: relationships between variability in niche position and species richness. Ecological Copmlexity 8:130–137CrossRefGoogle Scholar
  51. Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research. W.H. Freeman and Company, New YorkGoogle Scholar
  52. Sommer U, Gliwicz ZM, Lampert W, Duncan A (1986) The PEG-model of seasonal succession of planktonic events in fresh waters. Arch Hydrobiol 106:433–471Google Scholar
  53. Sommer U, Adrian R, Domis LD, Elser JJ, Gaedke U, Ibelings B, Jeppesen E, Lüring M, Molinero JC, Mooij WM, van Donk E, Winder M (2012) Beyond the plankton ecology group (PEG) model: mechanisms driving plankton succession. Annu Rev Ecol Evol Syst 43:429–448CrossRefGoogle Scholar
  54. Su X, Steinman AD, Xue Q, Zhao Y, Tang Y, Xie L (2017) Temporal patterns of phyto-bacterioplankton and their relationships with environmental factors in Lake Taihu, China. Chemosphere 184:299–308CrossRefGoogle Scholar
  55. Tilman D (1982) Resource partitioning and community structure. Princeton University Press, PrincetonGoogle Scholar
  56. Ulrich W, Almeida-Neto M (2012) On the meanings of nestedness: back to the basics. Ecography 35:1–7CrossRefGoogle Scholar
  57. Ulrich W, Zalewski M (2007) Are ground beetles neutral? Basic Appl Ecol 8:411–420CrossRefGoogle Scholar
  58. Ulrich W, Almeida-Neto M, Gotelli NJ (2009) A consumer’s guide to nestedness analysis. Oikos 118:3–17CrossRefGoogle Scholar
  59. Utermöhl H (1958) Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilung Internationale Vereinigung für Theoretische und Angewandte Limnologie 9:1–38Google Scholar
  60. Vellend M (2016) The theory of ecological communities. Princeton University Press, Princeton and OxfordCrossRefGoogle Scholar
  61. Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional! Oikos 116:882–892CrossRefGoogle Scholar
  62. Wagner C, Adrian R (2009) Cyanobacteria dominance: quantifying the effects of climate change. Limnol Oceanogr 54:2460–2468CrossRefGoogle Scholar
  63. Wagner C, Adrian R (2011) Consequences of changes in thermal regime for plankton diversity and trait composition in a polymictic lake: a matter of temporal scale. Freshw Biol 56:1949–1961CrossRefGoogle Scholar
  64. Walker SC, Cyr H (2007) Testing the standard neutral model of biodiversity in lake communities. Oikos 116:143–155CrossRefGoogle Scholar
  65. Weiher E, Keddy P (1999) Ecological assembly rules: perspectives, advances, retreats. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  66. Wood (2001) mgcv: GAMs and generalized ridge regression for R. R News 1:20–25Google Scholar
  67. Wood SN (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric gernalized linear models. J R Stat Soc (B) 73:3–36CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • C. Torsten Seltmann
    • 1
    Email author
  • Benjamin M. Kraemer
    • 1
  • Rita Adrian
    • 1
    • 2
  1. 1.Leibniz-Institute of Freshwater Ecology and Inland FisheriesBerlinGermany
  2. 2.Department of Biology, Chemistry and PharmacyFreie Universität BerlinBerlinGermany

Personalised recommendations