Theoretical Ecology

, Volume 9, Issue 4, pp 501–512 | Cite as

Evolutionary food web models: effects of an additional resource

  • Daniel Ritterskamp
  • Christoph Feenders
  • Daniel Bearup
  • Bernd Blasius


Many empirical food webs contain multiple resources, which can lead to the emergence of sub-communities—partitions—in a food web that are weakly connected with each other. These partitions interact and affect the complete food web. However, the fact that food webs can contain multiple resources is often neglected when describing food web assembly theoretically, by considering only a single resource. We present an allometric, evolutionary food web model and include two resources of different sizes. Simulations show that an additional resource can lead to the emergence of partitions, i.e. groups of species that specialise on different resources. For certain arrangements of these partitions, the interactions between them alter the food web properties. First, these interactions increase the variety of emerging network structures, since hierarchical bodysize relationships are weakened. Therefore, they could play an important role in explaining the variety of food web structures that is observed in empirical data. Second, interacting partitions can destabilise the population dynamics by introducing indirect interactions with a certain strength between predator and prey species, leading to biomass oscillations and evolutionary intermittence.


Partitions Multiple resources Substructures Intermittence Destabilisation Biomass oscillations Large community-evolution models 



The authors thank the two anonymous reviewer for their valuable comments and suggestions on this manuscript. This work was supported by: the DFG, as part of the research unit 1748; and by the Ministry of Science and Culture of Lower Saxony, in the project ‘Biodiversity-Ecosystem Functioning across marine and terrestrial ecosystems’.


  1. Allhoff KT, Drossel B (2013) When do evolutionary food web models generate complex networks? J Theor Biol 334:122–129. doi: 10.1016/j.jtbi.2013.06.008 CrossRefPubMedGoogle Scholar
  2. Allhoff KT, Ritterskamp D, Rall B C, Drossel GCB (2015) Evolutionary food web model based on body masses gives realistic networks with permanent species turnover. Sci Rep:5. doi: 10.1038/srep10955
  3. Armstrong RA, McGehee R (1980) Competitive exclusion. Amer Nat 115:151–170CrossRefGoogle Scholar
  4. Binzer A, Brose U, Curtsdotter A, Eklöf A, Rall BC, Riede JO, de Castro F (2011) The susceptibility of species to extinctions in model communities. Basic Appl Ecol 12:590–599. doi: 10.1016/j.baae.2011.09.002 CrossRefGoogle Scholar
  5. Brännström A, Johansson J (2012) Modelling the ecology and evolution of communities: a review of past achievements, current efforts, and future promises. Evol Ecol Res 14:601–625Google Scholar
  6. Brännström A, Loeuille N, Loreau M, Dieckmann U (2011) Emergence and maintenance of biodiversity in an evolutionary food-web model. Theor Ecol 4:467–478. doi: 10.1007/s12080-010-0089-6 CrossRefGoogle Scholar
  7. Brose U, Williams RJ, Martinez ND (2006) Allometric scaling enhances stability in complex food webs. Ecol Lett 9:1228–1236. doi: 10.1111/j.1461-0248.2006.00978.x CrossRefPubMedGoogle Scholar
  8. Byers JE, Noonburg EG (2003) Scale dependent effects of biotic resistance to biological invasion. Ecology 84:1428–1433. doi: 10.1890/02-3131 CrossRefGoogle Scholar
  9. Caldarelli G, Higgs PG, McKane AJ (1998) Modelling coevolution in multispecies communities. J Theor Biol 193:345–358. doi: 10.1006/jtbi.1998.0706 CrossRefPubMedGoogle Scholar
  10. Downing AS, Hajdu S, Hjerne O, Otto SA, Blenckner T, Larsson U, Winder M (2014) Zooming in on size distribution patterns underlying species coexistence in baltic sea phytoplankton. Ecol Lett 17:1219–1227. doi: 10.1111/ele.12327 CrossRefPubMedGoogle Scholar
  11. Drossel B, Higgs PG, Mckane AJ (2001) The influence of Predator-Prey population dynamics on the long-term evolution of food web structure. J Theor Biol 208:91–107. doi: 10.1006/jtbi.2000.2203 CrossRefPubMedGoogle Scholar
  12. Dunbar M (1953) Arctic and subarctic marine ecology: immediate problems. ARCTIC:6Google Scholar
  13. Egerton FN (2007) Understanding food chains and food webs, 1700-1970. Bull Ecol Soc Amer 8:50–69. doi: 10.1890/0012-9623(2007)88[50:UFCAFW]2.0.CO;2 CrossRefGoogle Scholar
  14. Fukami T, Wardle DA, Bellingham PJ, Mulder CPH, Towns DR, Yeates GW, Bonner KI, Durrett MS, Grant-Hoffman MN, Williamson WM (2006) Above- and below-ground impacts of introduced predators in seabird-dominated island ecosystems. Ecol Lett 9:1299–1307. doi: 10.1111/j.1461-0248.2006.00983.x CrossRefPubMedGoogle Scholar
  15. Fussmann GF, Ellner SP, Shertzer KW, Hairston NG Jr (2000) Crossing the hopf bifurcation in a live predator-prey system. Science 290:1358–1360. doi: 10.1126/science.290.5495.1358 CrossRefPubMedGoogle Scholar
  16. Gause G (1971) Struggle for existence. 2nd edn. Dover Publications IncGoogle Scholar
  17. Gough B (2009) GNU scientific library reference manual, 3rd edn. Network Theory LtdGoogle Scholar
  18. Holling CS (1959) The components of predation as revealed by a study of small-mammal predation of the european pine sawfly. Can Entomol 91:293–320. doi: 10.4039/Ent91293-5 CrossRefGoogle Scholar
  19. Huisman J, Johansson AM, Folmer EO, Weissing FJ (2001) Towards a solution of the plankton paradox: the importance of physiology and life history. Ecol Lett 4:408–411. doi: 10.1046/j.1461-0248.2001.00256.x CrossRefGoogle Scholar
  20. Huisman J, Weissing FJ (1999) Biodiversity of plankton by species oscillations and chaos. Nature:407–410. doi: 10.1038/46540
  21. Ingram T, Harmon LJ, Shurin JB (2009) Niche evolution, trophic structure, and species turnover in model food webs. Amer Nat 174:56–67CrossRefGoogle Scholar
  22. Larios L, Suding KN (2014) Competition and soil resource environment alter plant-soil feedbacks for a native and exotic grass. AoB Plants. doi: 10.1093/aobpla/plu077
  23. Loeuille N, Loreau M (2005) Evolutionary emergence of size-structured food webs. Proc Nat Acad Sci USA 102:5761–5766. doi: 10.1073/pnas.0408424102 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Loeuille N., Loreau M. (2009) Emergence of complex food web structure in community evolution models. In: Verhoef HA, J MP (eds) Community ecology: processes, models, and applications. Oxford University PressGoogle Scholar
  25. Macdonald N (1976) Time delay in simple chemostat models. Biotechnol Bioeng 18:805–812. doi: 10.1002/bit.260180604 CrossRefPubMedGoogle Scholar
  26. McCann K, Hastings A, Huxel GR (1998) Weak trophic interactions and the balance of nature. Nature 395:794–798CrossRefGoogle Scholar
  27. McCann KS (2000) The diversity-stability debate. Nature 405:228–233. doi: 10.1038/35012234 CrossRefPubMedGoogle Scholar
  28. Persson L, Diehl S, Johansson L, Andersson G, Hamrin SF (1992) Trophic interactions in temperate lake ecosystems: a test of food chain theory. Amer Nat 140:59–84CrossRefGoogle Scholar
  29. Peters RH (1986) The ecological implications of body size (Cambridge studies in ecology), 1 edn. Cambridge University PressGoogle Scholar
  30. Polis GA (1991) Complex trophic interactions in deserts: an empirical critique of food-web theory. Amer Nat 138:123–155CrossRefGoogle Scholar
  31. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes 3rd edition: the art of scientific computing. Cambridge University PressGoogle Scholar
  32. Ritterskamp D, Bearup D, Blasius B (2016a) Evolutionary cycles in an evolutionary food web model. Under reviewGoogle Scholar
  33. Ritterskamp D, Bearup D, Blasius B (2016b) A new dimension: evolutionary food web dynamics in two dimensional trait space. J Theor Biol. doi: 10.1016/j.jtbi.2016.03.042
  34. Rossberg A, Matsuda H, Amemiya T, Itoh K (2006) Food webs: experts consuming families of experts. J Theor Biol 241:552–563. doi: 10.1016/j.jtbi.2005.12.021 CrossRefPubMedGoogle Scholar
  35. Ruan S, Wolkowicz GS (1996) Bifurcation analysis of a chemostat model with a distributed delay. J Math Anal Appl 204:786–812. doi: 10.1006/jmaa.1996.0468 CrossRefGoogle Scholar
  36. Ryabov A, Morozov A, Blasius B (2015) Imperfect prey selectivity of predators promotes biodiversity and irregularity in food webs. Ecol Lett 18:1262–1269CrossRefGoogle Scholar
  37. Schwarzmüller F, Eisenhauer N, Brose U (2015) ’trophic whales’ as biotic buffers: weak interactions stabilize ecosystems against nutrient enrichment. J Anim Ecol 84:680–691. doi: 10.1111/1365-2656.12324 CrossRefPubMedGoogle Scholar
  38. Shea K, Chesson P (2002) Community ecology theory as a framework for biological invasions. Trends Ecol Evol 17:170–176. doi: 10.1016/S0169-5347(02)02495-3 CrossRefGoogle Scholar
  39. Sommer U, Stibor H, Katechakis A, Sommer F, Hansen T (2002) Pelagic food web configurations at different levels of nutrient richness and their implications for the ratio fish production: primary production. Hydrobiologia 484:11–20. doi: 10.1023/A:1021340601986 CrossRefGoogle Scholar
  40. Strong DR (1992) Are trophic cascades all wet? Differentiation and donor-control in speciose ecosystems. Ecology 73:747– 754CrossRefGoogle Scholar
  41. Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633. doi: 10.1126/science.1094875 CrossRefPubMedGoogle Scholar
  42. Williams RJ (2008) Effects of network and dynamical model structure on species persistence in large model food webs. Theor Ecol 1:141–151. doi: 10.1007/s12080-008-0013-5 CrossRefGoogle Scholar
  43. Williams RJ, Martinez ND (2004) Limits to trophic levels and omnivory in complex food webs: Theory and data. Amer Nat 163:458–468. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Daniel Ritterskamp
    • 1
  • Christoph Feenders
    • 1
  • Daniel Bearup
    • 1
  • Bernd Blasius
    • 1
  1. 1.CvO University Oldenburg, ICBMOldenburgGermany

Personalised recommendations