Advertisement

Theoretical Ecology

, Volume 9, Issue 4, pp 417–429 | Cite as

Trait selection during food web assembly: the roles of interactions and temperature

  • Isabelle Gounand
  • Sonia Kéfi
  • Nicolas Mouquet
  • Dominique Gravel
ORIGINAL PAPER

Abstract

Understanding the processes driving community assembly is a central theme in ecology, yet this topic is marginally studied in food webs. Bioenergetic models have been instrumental in the development of food web theory, using allometric relationships with body mass, temperature, and explicit energy flows. However, despite their popularity, little is known about the constraints they impose on assembly dynamics. In this study, we build on classical consumer–resource theory to analyze the implications of the assembly process on trait selection in food webs. Using bioenergetic models, we investigate the selective pressure on body mass and conversion efficiency and its dependence on trophic structure and temperature. We find that the selection exerted by exploitative competition is highly sensitive to how the energy fluxes are modeled. However, the addition of a trophic level consistently selects for smaller body masses of primary producers. An increase in temperature triggers important cascading changes in food webs via a reduction of producer biomass, which is detrimental to herbivore persistence. This affects the structure of trait distributions, which in turn strengthens the exploitative competition and the selective pressure on traits. Our results suggest that greater attention should be devoted to the effects of food web assembly on trait selection to understand the diversity and the functioning of real food webs, as well as their possible response to ongoing global changes.

Keywords

Community assembly Consumer–resource interactions Bioenergetic model Temperature Size spectrum Body mass Metabolic theory of ecology 

Notes

Acknowledgments

We thank Tanguy Daufresne, Ulrich Brose, Daniel Stouffer, and Barbara Drossel for early discussions and helpful suggestions. We also thank James Caveen, Rémy Dernat, and Khali Belkhir for technical assistance. The simulations largely benefited from the computing clusters of Université du Québec à Rimouski and from the Montpellier Bioinformatics Biodiversity platform (funded by the LabEx CeMEB). I.G. thanks the Frontenac program (Fonds de recherche du Québec—Nature et Technologies, and French consulate at Québec) for their financial support. This is ISEM publication number ISEM 2016-061.

Supplementary material

12080_2016_299_MOESM1_ESM.docx (337 kb)
ESM 1 (DOCX 336 kb)

References

  1. Angilletta MJ, Steury TD, Sears MW (2004) Temperature, growth rate, and body size in ectotherms: fitting pieces of a life-history puzzle. Integr Comp Biol 44:498–509CrossRefPubMedGoogle Scholar
  2. Bascompte J, Stouffer DB (2009) The assembly and disassembly of ecological networks. Philos Trans R Soc Lond B Biol Sci 364:1781–7. doi: 10.1098/rstb.2008.0226 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Berlow EL (1999) Strong effects of weak interactions in ecological communities. Nature 398:330–334CrossRefGoogle Scholar
  4. Berlow EL, Dunne JA, Martinez ND et al (2009) Simple prediction of interaction strengths in complex food webs. Proc Natl Acad Sci 106:187–191CrossRefPubMedGoogle Scholar
  5. Blumenshine SC, Lodge DM, Hodgson JR (2000) Gradient of fish predation alters body size distributions in Benthos. Ecology 81:374–386Google Scholar
  6. Boenigk J, Stadler P, Wiedlroither A, Hahn MW (2004) Strain-specific differences in the grazing sensitivities of closely related ultramicrobacteria affiliated with the Polynucleobacter cluster. Appl Environ Microbiol 70:5787–5793. doi: 10.1128/AEM.70.10.5787 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Brose U, Jonsson T, Berlow EL et al (2006a) Consumer-resource body-size relationships in natural food webs. Ecology 87:2411–2417CrossRefPubMedGoogle Scholar
  8. Brose U, Williams RJ, Martinez ND (2006b) Allometric scaling enhances stability in complex food webs. Ecol Lett 9:1228–1236. doi: 10.1111/j.1461-0248.2006.00978.x CrossRefPubMedGoogle Scholar
  9. Brose U, Dunne JA, Montoya JM et al (2012) Climate change in size-structured ecosystems. Philos Trans R Soc Lond B Biol Sci 367:2903–12. doi: 10.1098/rstb.2012.0232 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Brown JH, Gillooly JF, Allen AP et al (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789CrossRefGoogle Scholar
  11. Capitán JA, Cuesta JA, Bascompte J (2011) Species assembly in model ecosystems, I: analysis of the population model and the invasion dynamics. J Theor Biol 269:330–43. doi: 10.1016/j.jtbi.2010.09.032 CrossRefPubMedGoogle Scholar
  12. Case TJ (1990) Invasion resistance arises in strongly interacting species-rich model competition communities. Proc Natl Acad Sci 87:9610–9614CrossRefPubMedPubMedCentralGoogle Scholar
  13. Case TJ (1991) Invasion resistance, species buil-up and community collapse in metapopulation models with interspecies competition. Biol J Linn Soc 42:239–266CrossRefGoogle Scholar
  14. Chase JM, Leibold MA (2003) Ecological niches—linking classical and contemporary approaches. The University of Chicago press, Chicago and LondonCrossRefGoogle Scholar
  15. Chase JM, Abrams PA, Grover JP et al (2002) The interaction between predation and competition: a review and synthesis. Ecol Lett 5:302–315. doi: 10.1046/j.1461-0248.2002.00315.x CrossRefGoogle Scholar
  16. Chase JM, Biro EG, Ryberg WA, Smith KG (2009) Predators temper the relative importance of stochastic processes in the assembly of prey metacommunities. Ecol Lett 12:1210–8. doi: 10.1111/j.1461-0248.2009.01362.x CrossRefPubMedGoogle Scholar
  17. Chesson P, Kuang JJ (2008) The interaction between predation and competition. Nature 456:235–8. doi: 10.1038/nature07248 CrossRefPubMedGoogle Scholar
  18. Cohen JE, Jonsson T, Carpenter SR (2003) Ecological community description using the food web, species abundance, and body size. PNAS 100:1781–1786CrossRefPubMedPubMedCentralGoogle Scholar
  19. Daufresne M, Lengfellner K, Sommer U (2009) Global warming benefits the small in aquatic ecosystems. Proc Natl Acad Sci 106:12788–12793CrossRefPubMedPubMedCentralGoogle Scholar
  20. DeAngelis D, Mulholland P (1989) Nutrient dynamics and food web stability. Annu Rev Ecol Syst 20:71–95CrossRefGoogle Scholar
  21. Diehl S (1993) Relative consumer sizes and the strength of direct and indirect interactions in omnivorous interactions feeding relationships. Oikos 68:151–157CrossRefGoogle Scholar
  22. Drossel B, McKane AJ, Quince C (2004) The impact of nonlinear functional responses on the long-term evolution of food web structure. J Theor Biol 229:539–548CrossRefPubMedGoogle Scholar
  23. Dunne JA, Williams RJ (2009) Cascading extinctions and community collapse in model food webs. Philos Trans R Soc Lond B Biol Sci 364:1711–23. doi: 10.1098/rstb.2008.0219 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Dunne JA, Williams RJ, Martinez ND (2002) Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol Lett 5:558–567. doi: 10.1046/j.1461-0248.2002.00354.x CrossRefGoogle Scholar
  25. Forster J, Hirst AG, Atkinson D (2012) Warming-induced reductions in body size are greater in aquatic than terrestrial species. Proc Natl Acad Sci U S A 109:19310–4. doi: 10.1073/pnas.1210460109 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Fowler MS (2010) Extinction cascades and the distribution of species interactions. Oikos 119:864–873. doi: 10.1111/j.1600-0706.2009.17817.x CrossRefGoogle Scholar
  27. Fukami T (2005) Integrating internal and external dispersal in metacommunity assembly: preliminary theoretical analyses. Ecol Res 20:623–631. doi: 10.1007/s11284-005-0092-3 CrossRefGoogle Scholar
  28. Galassi M, Davies J, Theiler J, et al. (2011) GNU Scientific Library Reference Manual, 3rd ednGoogle Scholar
  29. Gause GF (1934) The struggle for existence. Wilkins & Williams, BaltimoreCrossRefGoogle Scholar
  30. Gilbert B, Tunney TD, McCann KS et al (2014) A bioenergetic framework for the temperature dependence of trophic interactions. Ecol Lett 17:902–14. doi: 10.1111/ele.12307 CrossRefPubMedGoogle Scholar
  31. Gillooly JF, Brown JH, West GB et al (2001) Effects of size and temperature on metabolic rate. Science 293:2248–51. doi: 10.1126/science.1061967 CrossRefPubMedGoogle Scholar
  32. Gosselain V, Viroux L, Descy JP (1998) Can a community of small-bodied grazers control phytoplankton in rivers ? Freshw Biol 39:9–24CrossRefGoogle Scholar
  33. Götzenberger L, de Bello F, Bråthen KA et al (2012) Ecological assembly rules in plant communities—approaches, patterns and prospects. Biol Rev Camb Philos Soc 87:111–27. doi: 10.1111/j.1469-185X.2011.00187.x CrossRefPubMedGoogle Scholar
  34. Gravel D, Guichard F, Hochberg ME (2011) Species coexistence in a variable world. Ecol Lett 14:828–39. doi: 10.1111/j.1461-0248.2011.01643.x CrossRefPubMedGoogle Scholar
  35. Gravel D, Poisot T, Albouy C et al (2013) Inferring food web structure from predator–prey body size relationships. Methods Ecol Evol 4:1083–1090. doi: 10.1111/2041-210X.12103 CrossRefGoogle Scholar
  36. Gross K, Cardinale BJ (2005) The functional consequences of random vs. ordered species extinctions. Ecol Lett 8:409–418. doi: 10.1111/j.1461-0248.2005.00733.x CrossRefGoogle Scholar
  37. Hardin G (1960) The competitive exclusion principle. Science 131:1292–1297CrossRefPubMedGoogle Scholar
  38. Hessen DO, Daufresne M, Leinaas HP (2013) Temperature-size relations from the cellular-genomic perspective. Biol Rev Camb Philos Soc 88:476–89. doi: 10.1111/brv.12006 CrossRefPubMedGoogle Scholar
  39. Hilligsøe KM, Richardson K, Bendtsen J et al (2011) Linking phytoplankton community size composition with temperature, plankton food web structure and sea–air CO2 flux. Deep Sea Res Part I Oceanogr Res Pap 58:826–838. doi: 10.1016/j.dsr.2011.06.004 CrossRefGoogle Scholar
  40. Holt RD, Lawton JH (1994) The ecological consequences of shared natural enemies. Annu Rev Ecol Syst 25:495–520CrossRefGoogle Scholar
  41. Holt RD, Grover JP, Tilman D (1994) Simple rules for interspecific dominance in systems with exploitative and apparent competition. Am Nat 144:741–771CrossRefGoogle Scholar
  42. Holt RD, Grover JP, Tilman D (2001) Simple rules for interspecific dominance in systems with exploitative and apparent competition. Am Nat 144:741–771CrossRefGoogle Scholar
  43. Holyoak M, Sachdev S (1998) Omnivory and the stability of simple food webs. Oecologia 117:413–419CrossRefGoogle Scholar
  44. Huisman J, Weissing FJ (1999) Biodiversity of plankton by species oscillations and chaos. Nature 402:407–410CrossRefGoogle Scholar
  45. Humphries MM, McCann KS (2014) Metabolic ecology. J Anim Ecol 83:7–19. doi: 10.1111/1365-2656.12124 CrossRefPubMedGoogle Scholar
  46. Jumars PA, Deming JW, Hill PS et al (1993) Physical constraints on marine osmotrophy in an optimal foraging context. Aquat Microb Food Webs 7:121–159Google Scholar
  47. Jürgens K, Sala MM (2000) Predation-mediated shifts in size distribution of microbial biomass and activity during detritus decomposition. Oikos 91:29–40CrossRefGoogle Scholar
  48. Karl I, Fischer K (2008) Why get big in the cold? Towards a solution to a life-history puzzle. Oecologia 155:215–25. doi: 10.1007/s00442-007-0902-0 CrossRefPubMedGoogle Scholar
  49. Klauschies T, Bauer B, Aberle-Malzahn N et al (2012) Climate change effects on phytoplankton depend on cell size and food web structure. Mar Biol 159:2455–2478. doi: 10.1007/s00227-012-1904-y CrossRefGoogle Scholar
  50. Law R, Morton RD (1993) Alternative permanent states of ecological communities. Ecology 74:1347–1361CrossRefGoogle Scholar
  51. Law R, Morton RD (1996) Permanence and the assembly of ecological communities. Ecology 77:762–775CrossRefGoogle Scholar
  52. Legagneux P, Gauthier G, Lecomte N et al (2014) Arctic ecosystem structure and functioning shaped by climate and herbivore body size. Nat Clim Chang 4:379–383. doi: 10.1038/NCLIMATE2168 CrossRefGoogle Scholar
  53. Lockwood JL, Powell RD, Nott PM, Pimm SL (1997) Assembling ecological communities in time and space. Oikos 80:549–553. doi: 10.2307/3546628 CrossRefGoogle Scholar
  54. Loeuille N, Loreau M (2005) Evolutionary emergence of size-structured food webs. Proc Natl Acad Sci 102:5761–5766CrossRefPubMedPubMedCentralGoogle Scholar
  55. Loreau M (2010) Linking biodiversity and ecosystems: towards a unifying ecological theory. Philos Trans R Soc Lond B Biol Sci 365:49–60. doi: 10.1098/rstb.2009.0155 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Louette G, De Meester L (2007) Predation and priority effects in experimental zooplankton communities. Oikos 116:419–426. doi: 10.1111/j.2006.0030-1299.15381.x CrossRefGoogle Scholar
  57. Luh H-K, Pimm SL (1993) The assembly of ecological communities: a minimalist approach. J Anim Ecol 62:749–765CrossRefGoogle Scholar
  58. Martin LM, Wilsey BJ (2012) Assembly history alters alpha and beta diversity, exotic-native proportions and functioning of restored prairie plant communities. J Appl Ecol 49:1436–1445. doi: 10.1111/j.1365-2664.2012.02202.x CrossRefGoogle Scholar
  59. Matz C, Jürgens K (2003) Interaction of nutrient limitation and protozoan grazing determines the phenotypic structure of a bacterial community. Microb Ecol 45:384–98. doi: 10.1007/s00248-003-2000-0 CrossRefPubMedGoogle Scholar
  60. Miller TE, Burns JH, Munguia P et al (2005) A critical review of twenty years’ use of the resource-ratio theory. Am Nat 165:439–48. doi: 10.1086/428681 CrossRefPubMedGoogle Scholar
  61. Montoya JM, Pimm SL, Solé RV (2006) Ecological networks and their fragility. Nature 442:259–64. doi: 10.1038/nature04927 CrossRefPubMedGoogle Scholar
  62. Morton RD, Law R (1997) Regional species pools and the assembly of local ecological communities. J Theor Biol 321–331Google Scholar
  63. Murdoch WW, Briggs CJ, Nisbet RM (2003) Consumer-resource dynamics. 462Google Scholar
  64. Olito C, Fukami T (2009) Long-term effects of predator arrival timing on prey community succession. Am Nat 173:354–62. doi: 10.1086/596538 CrossRefPubMedGoogle Scholar
  65. Petchey OL, McPhearson PT, Casey TM, Morin PJ (1999) Environmental warming alters food-web structure and ecosystem function. Nature 402:69–72CrossRefGoogle Scholar
  66. Petchey OL, Beckerman AP, Riede JO, Warren PH (2008) Size, foraging, and food web structure. Proc Natl Acad Sci U S A 105:4191–6. doi: 10.1073/pnas.0710672105 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Peter KH, Sommer U (2012) Phytoplankton cell size: intra- and interspecific effects of warming and grazing. PLoS ONE. doi: 10.1371/journal.pone.0049632 Google Scholar
  68. Polis GA (1991) Complex trophic interactions in deserts: an empirical critique of food-web theory. Am Nat 138:123–155CrossRefGoogle Scholar
  69. Post WM, Pimm SL (1983) Community assembly and food web stability. Math Biosci 64:169–192CrossRefGoogle Scholar
  70. Pounds JA, Fogden MPL, Campbell JH (1999) Biological response to climate change on a tropical mountain. Nature 398:611–615CrossRefGoogle Scholar
  71. Price CA, Weitz JS, Savage VM et al (2012) Testing the metabolic theory of ecology. Ecol Lett 15:1465–74. doi: 10.1111/j.1461-0248.2012.01860.x CrossRefPubMedGoogle Scholar
  72. Rall BC, Vucic-Pestic O, Ehnes RB et al (2010) Temperature, predator–prey interaction strength and population stability. Glob Chang Biol 16:2145–2157. doi: 10.1111/j.1365-2486.2009.02124.x CrossRefGoogle Scholar
  73. Rall BC, Brose U, Hartvig M et al (2012) Universal temperature and body-mass scaling of feeding rates. Philos Trans R Soc Lond B Biol Sci 367:2923–34. doi: 10.1098/rstb.2012.0242 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Riede JO, Brose U, Ebenman B et al (2011) Stepping in Elton’s footprints: a general scaling model for body masses and trophic levels across ecosystems. Ecol Lett 14:169–178. doi: 10.1111/j.1461-0248.2010.01568.x CrossRefPubMedGoogle Scholar
  75. Savage VM, Gillooly JF, Brown JH, Charnov EL (2004) Effects of body size and temperature on population growth. Am Nat 163:429–41. doi: 10.1086/381872 CrossRefPubMedGoogle Scholar
  76. Schmitz OJ, Hambäck PA, Beckerman AP (2000) Trophic cascades in terrestrial systems: a review of the effects of carnivore removals on plants. Am Nat 155:141–153. doi: 10.1086/303311 CrossRefPubMedGoogle Scholar
  77. Schramski JR, Dell AI, Grady JM, et al. (2015) Metabolic theory predicts whole-ecosystem properties. 112:2617–2622. doi:  10.1073/pnas.1423502112
  78. Schreiber SJ, Rittenhouse S (2004) From simple rules to cycling in community assembly. Oikos 2:349–358CrossRefGoogle Scholar
  79. Smetacek V, Assmy P, Henjes J (2004) The role of grazing in structuring Southern Ocean pelagic ecosystems and biogeochemical cycles. Antarct Sci 16:541–558. doi: 10.1017/S0954102004002317 CrossRefGoogle Scholar
  80. Solé RV, Montoya JM (2001) Complexity and fragility in ecological networks. Proc Biol Sci 268:2039–45. doi: 10.1098/rspb.2001.1767 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Thébault E, Loreau M (2003) Food-web constraints on biodiversity–ecosystem functioning relationships. Proc Natl Acad Sci 100:14949–14954CrossRefPubMedPubMedCentralGoogle Scholar
  82. Thébault E, Loreau M (2006) The relationship between biodiversity and ecosystem functioning in food webs. Ecol Res 21:17–25. doi: 10.1007/s11284-005-0127-9 CrossRefGoogle Scholar
  83. Thingstad TF, Øvreås L, Egge JK et al (2005) Use of non-limiting substrates to increase size; a generic strategy to simultaneously optimize uptake and minimize predation in pelagic osmotrophs? Ecol Lett 8:675–682. doi: 10.1111/j.1461-0248.2005.00768.x CrossRefGoogle Scholar
  84. Tilman D (1977) Resource competition between plankton algae: an experimental and theoretical approach. Ecology 58:338–348CrossRefGoogle Scholar
  85. Tilman D (1980) Resources: a graphical—mechanistic approach to competition and predation. Am Nat 116:362–393CrossRefGoogle Scholar
  86. Tilman D (1982) Resource competition and community structure. Princeton Monographs in Population Biology 17. Princeton University Press, PrincetonGoogle Scholar
  87. Tilman D, Mattson M, Langer S (1981) Competition and nutrient kinetics along a temperature gradient: an experimental test of a mechanistic approach to niche theory. Limnol Oceanogr 26:1020–1033CrossRefGoogle Scholar
  88. Van der Have TM, De Jong G (1996) Adult size in ectotherms: temperature effects on growth and differentiation. J Theor Biol 183:329–340CrossRefGoogle Scholar
  89. Vasseur DA, McCann KS (2005) A mechanistic approach for modeling temperature-dependent consumer-resource dynamics. Am Nat 166:184–98. doi: 10.1086/431285 CrossRefPubMedGoogle Scholar
  90. Virgo N, Law R, Emmerson M (2006) Sequentially assembled food webs and extremum principles in ecosystem ecology. J Anim Ecol 75:377–86. doi: 10.1111/j.1365-2656.2006.01058.x CrossRefPubMedGoogle Scholar
  91. Vucic-Pestic O, Ehnes RB, Rall BC, Brose U (2011) Warming up the system: higher predator feeding rates but lower energetic efficiencies. Glob Chang Biol 17:1301–1310. doi: 10.1111/j.1365-2486.2010.02329.x CrossRefGoogle Scholar
  92. Woodward G, Ebenman B, Emmerson M et al (2005) Body size in ecological networks. Trends Ecol Evol 20:402–9. doi: 10.1016/j.tree.2005.04.005 CrossRefPubMedGoogle Scholar
  93. Yodzis P, Innes S (1992) Body size and consumer-resource dynamics. Am Nat 139:1151–1175CrossRefGoogle Scholar
  94. Yom-Tov Y, Heggberget TM, Wiig O, Yom-Tov S (2006) Body size changes among otters, Lutra lutra, in Norway: the possible effects of food availability and global warming. Oecologia 150:155–60. doi: 10.1007/s00442-006-0499-8 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Isabelle Gounand
    • 1
    • 2
    • 3
    • 4
    • 5
  • Sonia Kéfi
    • 1
  • Nicolas Mouquet
    • 1
  • Dominique Gravel
    • 2
    • 3
  1. 1.Institut des Sciences de l’EvolutionUniversité de Montpellier, CNRS, IRD, EPHEMontpellier Cedex 05France
  2. 2.Département de Biologie, Chimie et GéographieUniversité du Québec à RimouskiQuébecCanada
  3. 3.Quebec Center for Biodiversity ScienceQuebecCanada
  4. 4.Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZürichSwitzerland
  5. 5.Department of Aquatic EcologyEawag, Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland

Personalised recommendations