Theoretical Ecology

, Volume 9, Issue 2, pp 185–195 | Cite as

Many weak interactions and few strong; food-web feasibility depends on the combination of the strength of species’ interactions and their correct arrangement

  • K. L. Wootton
  • D. B. Stouffer


Ecological communities consist of generalists who interact with proportionally many species, and specialists who interact with proportionally few. The strength of these interactions also varies, with communities typically exhibiting a few strong links embedded within many weak links. Historically, it has been argued that generalists should interact more weakly with their partners than specialists and, since weak interactions are thought to increase community stability, that this pattern increases the stability of diverse communities. Here, we studied model-generated predator-prey communities to explicitly investigate the validity of this argument. In feasible communities—those which were both locally stable and all species had positive biomass—we indeed found that species with many predators or prey are affected by them more weakly than species with few. This relationship, however, is only part of the story. While species with many predators (or prey) tend to be only weakly affected by each of them, these many weak interactions are balanced by a few strong interactions with prey (or predators). These few strong interactions are large enough that, when the effect of predator and prey interactions are combined, it seems that species with many interactions actually interact more strongly than species with few interactions. Though past research has tended to focus on either the arrangement of species interactions or the strength of those interactions, we show here that the two are in fact inextricably linked. This observation has implications for both the realistic design of theoretical models, and the conservation of ecological communities, especially those in which the strength and arrangement of species’ interactions are impacted by biodiversity-loss disturbances such as habitat alteration.


Interaction strength Stability Food-web structure Predator-prey Community matrix 



We thank Alyssa Cirtwill, Camille Coux, Guilio Dalla Riva, Nick Baker, Carla Gomez Creutzberg, Melissa Broussard, Johanna Voinopol-Sassu, Michelle Lambert, Karen Adair, Nixie Boddy, Sophie Hunt, Katie Bowron, Liezl Thalwitzer, Maggie Olsen and Josh Van Lier for comments on the manuscript.

We thank Stefano Allesina and Si Tang for discussions about solving for growth rate and biomass directly from the community matrix.

KLW was supported by a University of Canterbury Master’s Scholarship, a William Georgetti Scholarship, a Freemason’s University Scholarship, a Sadie Balkind Scholarship, administered by the Canterbury Branch of the New Zealand Federation of Graduate Women, a University of Canterbury Summer Research Scholarship, a University of Canterbury Alumni Association Scholarship and a University of Canterbury Senior Scholarship, and DBS by a Marsden Fund Fast-Start grant (UOC-1101) and a Rutherford Discovery Fellowship, both administered by the Royal Society of New Zealand. We are thankful to the BlueFern University of Canterbury Super Computer for computing facilities.


  1. Allesina S, Pascual M (2008) Network structure, predator-prey modules, and stability in large food webs. Theor Ecol 1:55–64. doi: 10.1007/s12080-007-0007-8 CrossRefGoogle Scholar
  2. Allesina S, Tang S (2012) Stability criteria for complex ecosystems. Nature 483(7388):205–208. doi: 10.1038/nature10832 CrossRefPubMedGoogle Scholar
  3. Arii K, Parrott L (2004) Emergence of non-random structure in local food webs generated from randomly structured regional webs. J Theor Biol 227(3):327–333. doi: 10.1016/j.jtbi.2003.11.011 CrossRefPubMedGoogle Scholar
  4. Barabási AL, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512. doi: 10.1126/science.286.5439.509 CrossRefPubMedGoogle Scholar
  5. Bascompte J, Jordano P, Melián CJ, Olesen JM (2003) The nested assembly of plant-animal mutualistic networks. Proc Natl Acad Sci 100(16):9383–9387CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bernays EA, Singer MS, Rodrigues D (2004) Foraging in nature: foraging efficiency and attentiveness in caterpillars with different diet breadths. Ecol Entomol 29(4):389–397. doi: 10.1111/j.0307-6946.2004.00615.x CrossRefGoogle Scholar
  7. Borrelli JJ (2015) Selection against instability: stable subgraphs are most frequent in empirical food webs. Oikos. doi: 10.1111/oik.02176  10.1111/oik.c
  8. Borrelli JJ, Ginzburg LR (2014) Why there are so few trophic levels: Selection against instability explains the pattern. Food Webs 1:10–17. doi: 10.1016/j.fooweb.2014.11.002 CrossRefGoogle Scholar
  9. Borrelli JJ, Allesina S, Amarasekare P, Arditi R, Chase I, Damuth J, Holt RD, Logofet DO, Novak M, Rohr RP, Rossberg AG, Spencer M, Tran JK, Ginzburg LR (2015) Selection on stability across ecological scales. Trends Ecol Evol 30(7):417–425. doi: 10.1016/j.tree.2015.05.001 CrossRefPubMedGoogle Scholar
  10. Brose U (2010) Improving nature conservancy strategies by ecological network theory. Basic Appl Ecol 11(1):1–5. doi: 10.1016/j.baae.2009.11.003
  11. Camacho J, Guimerà R, Nunes Amaral LA (2002) Robust patterns in food web structure. Phys Rev Lett 88(22):228,102. doi: 10.1103/PhysRevLett.88.228102 CrossRefGoogle Scholar
  12. Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Da Wardle, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012) Biodiversity loss and its impact on humanity. Nature 486(7401):59–67. doi: 10.1038/nature11148 CrossRefPubMedGoogle Scholar
  13. de Mazancourt C, Isbell F, Larocque A, Berendse F, De Luca E, Grace JB, Haegeman B, Wayne Polley H, Roscher C, Schmid B, Tilman D, van Ruijven J, Weigelt A, Wilsey BJ, Loreau M (2013) Predicting ecosystem stability from community composition and biodiversity. Ecol Lett 16(5):617–25. doi: 10.1111/ele.12088 CrossRefPubMedGoogle Scholar
  14. de Ruiter PC, Neutel AM, Moore JC (1995) Energetics, patterns of interaction strengths, and stability in real ecosystems. Science 269(5228):1257–1260CrossRefPubMedGoogle Scholar
  15. Donohue I, Petchey OL, Montoya JM, Jackson AL, McNally L, Viana M, Healy K, Lurgi M, O’Connor NE, Emmerson MC (2013) On the dimensionality of ecological stability. Ecol Lett 16(4):421–429. doi: 10.1111/ele.12086 CrossRefPubMedGoogle Scholar
  16. Dunne JA, Williams RJ, Martinez ND (2002) Food-web structure and network theory: the role of connectance and size. Proc Natl Acad Sci 99(20):12,917–12,922. doi: 10.1073/pnas.192407699 CrossRefGoogle Scholar
  17. Emmerson M, Yearsley JM (2004) Weak interactions, omnivory and emergent food-web properties. Proc R Soc B Biol Sci 271(1537):397–405. doi: 10.1098/rspb.2003.2592 CrossRefGoogle Scholar
  18. Estrada E (2007) Food webs robustness to biodiversity loss: the roles of connectance, expansibility and degree distribution. J Theor Biol 244(2):296–307. doi: 10.1016/j.jtbi.2006.08.002 CrossRefPubMedGoogle Scholar
  19. Fagan WF, Hurd LE (1994) Hatch density variation of a generalist arthropod predator: population consequences and community impact. Ecology 75(7):2022–2032CrossRefGoogle Scholar
  20. Gardner M, Ashby W (1970) Connectance of large dynamic (cybernetic) systems: critical values for stability. Nature 228(21):784CrossRefPubMedGoogle Scholar
  21. Gellner G, McCann K (2012) Reconciling the Omnivory-stability debate. Am Nat 179(1):22–37. doi: 10.1086/663191 CrossRefPubMedGoogle Scholar
  22. Gilpin M (1975) Stability of feasible predator-prey systems. Nature 254:137–139CrossRefGoogle Scholar
  23. Gravel D, Canard E, Guichard F, Mouquet N (2011) Persistence increases with diversity and connectance in trophic metacommunities. PLOS ONE 6(5):e19,374. doi: 10.1371/journal.pone.0019374 CrossRefGoogle Scholar
  24. Gunzburger MS, Travis J (2004) Evaluating predation pressure on green treefrog larvae across a habitat gradient. Oecologia 140(3):422–9. doi: 10.1007/s00442-004-1610-7 CrossRefPubMedGoogle Scholar
  25. Haddad NM, Crutsinger GM, Gross K, Haarstad J, Tilman D (2011) Plant diversity and the stability of foodwebs. Ecol Lett 14(1):42–6. doi: 10.1111/j.1461-0248.2010.01548.x CrossRefPubMedGoogle Scholar
  26. Haydon D (1994) Pivotal assumptions determining the relationship between stability and complexity: an analytical synthesis of the stability-complexity debate. Am Nat 144(1):14. doi: 10.1086/285658  10.1086/285658 CrossRefGoogle Scholar
  27. Haydon DT (2000) Maximally stable model ecosystems can be highly connected. Ecology 81(9):2631–2636. doi: 10.1890/0012-9658(2000)081%5B2631:MSMECB%5D2.0.CO;2
  28. Holling C (1959) The components of predation as revealed by a study of small-mammal predation of the European pine sawfly. The Canadian Entomologist 93(5):293–320CrossRefGoogle Scholar
  29. Holyoak M, Sachdev S (1998) Omnivory and the stability of simple food webs. Oecologia 117:413–419CrossRefGoogle Scholar
  30. Ives AR, Cardinale BJ (2004) Food-web interactions govern the resistance of communities after non-random extinctions. Nature 429:174–177. doi: 10.1038/nature02454.1 CrossRefPubMedGoogle Scholar
  31. Ives AR, Carpenter SR (2007) Stability and diversity of ecosystems. Science 317(5834):58–62. doi: 10.1126/science.1133258 CrossRefPubMedGoogle Scholar
  32. James A, Pitchford JW, Plank MJ (2012) Disentangling nestedness from models of ecological complexity. Nature 487(7406):227–230. doi: 10.1038/nature11214 CrossRefPubMedGoogle Scholar
  33. Jansen VAA, Kokkoris GD (2003) Complexity and stability revisited. Ecol Lett 6(6):498–502. doi: 10.1046/j.1461-0248.2003.00464.x CrossRefGoogle Scholar
  34. Kokkoris G, Jansen V (2002) Variability in interaction strength and implications for biodiversity. J Anim Ecol 71(2):362–371. doi: 10.1046/j.1365-2656.2002.00604.x CrossRefGoogle Scholar
  35. Laska M, Wootton J (1998) Theoretical concepts and empirical approaches to measuring interaction strength. Ecology 79(2): 461–476CrossRefGoogle Scholar
  36. Law R, Morton R (1993) Alternative permanent states of ecological communities. Ecology 74(5):1347–1361CrossRefGoogle Scholar
  37. Levins R (1968) Evolution in changing environments: some theoretical explorations. Princeton University Press, PrincetonGoogle Scholar
  38. Loreau M, Mouquet N, Gonzalez A (2003) Biodiversity as spatial insurance in heterogeneous landscapes. Proc Natl Acad Sci 100(22):12,765–12,770. doi: 10.1073/pnas.2235465100 CrossRefGoogle Scholar
  39. MacArthur R (1955) Fluctuations of animal populations and a measure of community stability. Ecology 36(3):533–536CrossRefGoogle Scholar
  40. May R (1972) Will a large complex system be stable? Nature 238: 413–414CrossRefPubMedGoogle Scholar
  41. McCann K, Hastings A (1997) Re-evaluating the omnivory-stability relationship in food webs. Proc R Soc B Biol Sci 264(1385):1249–1254. doi: 10.1098/rspb.1997.0172 CrossRefGoogle Scholar
  42. McCann K, Hastings A, Huxel G (1998) Weak trophic interactions and the balance of nature. Nature 395(October):794–798CrossRefGoogle Scholar
  43. McCann KS (2000) The diversity-stability debate. Nature 405(6783):228–233. doi: 10.1038/35012234 CrossRefPubMedGoogle Scholar
  44. Montoya J, Solé R (2003) Topological properties of food webs: from real data to community assembly models. Oikos 102(3): 614–622CrossRefGoogle Scholar
  45. Montoya J, Emmerson M, Solé R, Woodward G (2005) Perturbations and indirect effects in complex food webs. In: de Ruiter PC, Wolters V, Moore JC (eds) Dynamic Food Webs: Multispecies assemblages, ecosystem development, and environmental change. Academic, New York, pp 369–380Google Scholar
  46. Montoya JM, Woodward G, Emmerson MC, Solé RV (2009) Press perturbations and indirect effects in real food webs. Ecology 90(9):2426–2433CrossRefPubMedGoogle Scholar
  47. Mougi A, Kondoh M (2012) Diversity of interaction types and ecological community stability. Science 337(6092):349–351. doi: 10.1126/science.1220529 CrossRefPubMedGoogle Scholar
  48. Neutel AM, Heesterbeek JAP, De Ruiter PC (2002) Stability in real food webs: weak links in long loops. Science 296(5570):1120–3. doi: 10.1126/science.1068326 CrossRefPubMedGoogle Scholar
  49. O’Gorman EJ, Jacob U, Jonsson T, Emmerson MC (2010) Interaction strength, food web topology and the relative importance of species in food webs. J Anim Ecol 79(3):682–92. doi: 10.1111/j.1365-2656.2009.01658.x CrossRefPubMedGoogle Scholar
  50. Otto SB, Rall BC, Brose U (2007) Allometric degree distributions facilitate food-web stability. Nature 450(7173):1226–1229. doi: 10.1038/nature06359 CrossRefPubMedGoogle Scholar
  51. Paine RT (1992) Food-web analysis through field measurement of per capita interaction strength. Nature 355(6355):73–75CrossRefGoogle Scholar
  52. Paterson G, Whittle DM, Drouillard KG, Haffner GD (2009) Declining lake trout (Salvelinus namaycush) energy density: are there too many salmonid predators in the Great Lakes? Can J Fish Aquat Sci 66(6):919–932. doi: 10.1139/F09-048 CrossRefGoogle Scholar
  53. Pereira HM, Leadley PW, Proença V, Alkemade R, Scharlemann JPW, Fernandez-Manjarrés JF, Araújo MB, Balvanera P, Biggs R, Cheung WWL, Chini L, Cooper HD, Gilman EL, Guénette S, Hurtt GC, Huntington HP, Mace GM, Oberdorff T, Revenga C, Rodrigues P, Scholes RJ, Sumaila UR, Walpole M (2010) Scenarios for global biodiversity in the 21st century. Science 330(6010):1496–1501. doi: 10.1126/science.1196624 CrossRefPubMedGoogle Scholar
  54. Pimm S, Lawton J (1978) On feeding on more than one trophic level. Nature 275:542–544CrossRefGoogle Scholar
  55. Pimm SL, Lawton JH (1977) Number of trophic levels in ecological communities. Nature 268:330–331CrossRefGoogle Scholar
  56. Roberts A (1974) The stability of a feasible random ecosystem. Nature 251:607–608CrossRefGoogle Scholar
  57. Rodriguez-Girones M (2012) Possible top-down control of solitary bee populations by ambush predators. Behav Ecol 23(3):559–565. doi: 10.1093/beheco/arr228 CrossRefGoogle Scholar
  58. Rooney N, McCann KS (2012) Integrating food web diversity, structure and stability. Trends Ecol Evol 27(1):40–6. doi: 10.1016/j.tree.2011.09.001 CrossRefPubMedGoogle Scholar
  59. Stouffer D, Camacho J, Guimera R, NC A, Nunes Amaral LA (2005) Quantitative patterns in the structure of model and empirical food webs. Ecology 86(5):1301–1311CrossRefGoogle Scholar
  60. Stouffer DB, Bascompte J (2010) Understanding food-web persistence from local to global scales. Ecol Lett 13(2):154–161. doi: 10.1111/j.1461-0248.2009.01407.x CrossRefPubMedGoogle Scholar
  61. Stouffer DB, Bascompte J (2011) Compartmentalization increases food-web persistence. Proc Natl Acad Sci 108(9):3648–3652. doi: 10.1073/pnas.1014353108 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Tanabe K, Namba T (2005) Omnivory creates chaos in simple food web models. Ecology 86(12):3411–3414. doi: 10.1890/05-0720  10.1890/05-0720 CrossRefGoogle Scholar
  63. Terraube J, Arroyo B, Madders M, Mougeot F (2011) Diet specialisation and foraging efficiency under fluctuating vole abundance: a comparison between generalist and specialist avian predators. Oikos 120(2):234–244. doi: 10.1111/j.1600-0706.2010.18554.x CrossRefGoogle Scholar
  64. Thébault E, Fontaine C (2010) Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329(5993):853–856. doi: 10.1126/science.1188321 CrossRefPubMedGoogle Scholar
  65. Tilman D (1996) Biodiversity: population versus ecosystem stability. Ecology 77(2):350–363CrossRefGoogle Scholar
  66. Tilman D, Downing J (1994) Biodiversity and stability in grasslands. Nature 367:363–365CrossRefGoogle Scholar
  67. Tylianakis JM, Laliberté E, Nielsen A, Bascompte J (2010) Conservation of species interaction networks. Biol Conserv 143(10): 2270–2279. doi: 10.1016/j.biocon.2009.12.004 CrossRefGoogle Scholar
  68. Williams RJ (2008) Effects of network and dynamical model structure on species persistence in large model food webs. Theor Ecol 1(3):141–151. doi: 10.1007/s12080-008-0013-5 CrossRefGoogle Scholar
  69. Williams RJ, Martinez ND (2000) Simple rules yield complex food webs. Nature 404(6774):180–183.  10.1038/35004572 CrossRefPubMedGoogle Scholar
  70. Williams RJ, Martinez ND (2008) Success and its limits among structural models of complex food webs. J Anim Ecol 77(3):512–519. doi: 10.1111/j.1365-2656.2008.01362.x CrossRefPubMedGoogle Scholar
  71. Wootton J (1997) Estimates and tests of per capita interaction strength: diet, abundance, and impact of intertidally foraging birds. Ecol Monogr 67(1):45–64CrossRefGoogle Scholar
  72. Wootton JT, Emmerson M (2005) Measurement of interaction strength in nature. Annu Rev Ecol Evol Syst 36(1):419–444. doi: 10.1146/annurev.ecolsys.36.091704.175535 CrossRefGoogle Scholar
  73. Worm B, Duffy J (2003) Biodiversity, productivity and stability in real food webs. Trends Ecol Evol 18 (12):628–632. doi: 10.1016/j.tree.2003.09.003 CrossRefGoogle Scholar
  74. Yamada SB, Boulding EG (1998) Claw morphology, prey size selection and foraging efficiency in generalist and specialist shell-breaking crabs. J Exp Mar Biol Ecol 220(2):191–211. doi: 10.1016/S0022-0981(97)00122-6 CrossRefGoogle Scholar
  75. Yodzis P (1988) The indeterminacy of ecological interactions as perceived through perturbation experiments. Ecology 69(2): 508–515CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Centre for Integrative Ecology, School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand

Personalised recommendations