Theoretical Ecology

, Volume 8, Issue 4, pp 437–447 | Cite as

Resource distribution drives the adoption of migratory, partially migratory, or residential strategies

  • Timothy C. Reluga
  • Allison K. Shaw


Organismal movement can take on a variety of spatial and temporal forms. These forms depend in part on the type and scale of environment experienced as well as the internal state of the individual. However, individuals experiencing seemingly the same environment on the same time scale can display different movement strategies. While theorists have mathematically analyzed patch models and simulated spatially-explicit models, few studies have provided a mathematical analysis of migration in spatially-explicit models. Here, we consider a spatially explicit one-dimensional model where movement is costly and individuals must return to a common breeding ground annually to reproduce. We derive the optimal movement strategy, given specific movement costs and environmental resource distributions, obtaining closed-form solutions and results in several important special cases. We find, intuitively, that steep resource clines favor migratory behavior and shallow resource clines favor residential behavior, while lower movement efficiencies and shorter breeding cycles favor residency. However, we also show that when resource clines are sharp, migrants and residents can coinvade with each exploiting a locally optimal behavior. This can be interpreted as an example of partial migration (if migrants and residents are members of the same species). Alternatively, this can also be interpreted as two recently divergent species coinvading on a single resource, using different movement strategies to share the niche. We conclude with a discussion of density-dependent pressures on movement, including local resource depletion, and show that the density-independent results are relevant to density-dependent situations by calculating some stable strategy allocations analogous to ideal free distributions.


Partial migration Optimal control Coexistence 



Thanks to the editor and two anonymous reviewers for helpful criticism in revising our manuscript. This research was supported by NSF grants DMS-0920822 to TCR and OISE-1159097 to AKS. The calculations in this paper were obtained using the sympy and scipy libraries for python (SymPy Development Team 2013; Jones et al. 2001; Python Software Foundation 2010). Graphics were prepared using Gnuplot and Matplotlib. (Williams et al. 2010; Hunter 2007).


  1. Alerstam T, Hedenström A, Akesson S (2003) Long-distance migration: Evolution and determinants. Oikos 103(2):247–260. doi: 10.1034/j.1600-0706.2003.12559.x CrossRefGoogle Scholar
  2. Bode M, Bode L, Armsworth PR (2011) Different dispersal abilities allow reef fish to coexist. Proc Natl Acad Sci 108(39):16,317–16,321. doi: 10.1073/pnas.1101019108 CrossRefGoogle Scholar
  3. Caut S, Guirlet E, Angulo E, Das K, Girondot M (2008) Isotope analysis reveals foraging area dichotomy for Atlantic Leatherback Turtles. PlOS One 3(3):e1845. doi: 10.1371/journal.pone.0001845 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Chapman BB, Brönmark C, Nilsson J (2011) The ecology and evolution of partial migration. Oikos 120:1764–1775. doi: 10.1111/j.1600-0706.2011.20131.x CrossRefGoogle Scholar
  5. Christiansen FB (1975) Hard and soft selection in a subdivided population. Am Nat 109(965):11–16. doi: 10.1086/282970 CrossRefGoogle Scholar
  6. Clobert J, Baguette M, Benton TG, Bullock JM (2012) Dispersal ecology and evolution. Oxford University Press, OxfordCrossRefGoogle Scholar
  7. Cohen D (1967) Optimization of seasonal migratory behavior. American Naturalist pp 5–17.
  8. Cresswell KA, Satterthwaite WH, Sword GA (2011) Understanding the evolution of migration through empirical examples. In: Milner-Gulland EJ, Fryxell JM, Sinclair ARE (eds) Animal migration: a synthesis. Oxford University Press, New York City, NY, pp 7–16Google Scholar
  9. Débarre F, Gandon S (2011) Evolution in heterogeneous environments: between soft and hard selection. The American Naturalist 177(3):E84–E97. doi: 10.1086/658178 CrossRefPubMedGoogle Scholar
  10. Dingle H (2014) Migration: the biology of life on the move., 2nd edn. Oxford University Press, Oxford, UKCrossRefGoogle Scholar
  11. Doebeli M, Ruxton GD (1997) Evolution of dispersal rates in metapopulation models: branching and cyclic dynamics in phenotype space. Evolution pp 1730–1741. doi: 10.2307/2410996
  12. Egevang C, Stenhouse IJ, Phillips RA, Petersen AT, Fox JW, Silk JRD (2010) Tracking of Arctic terns Sterna paradisaea reveals longest animal migration. Proc Natl Acad Sci U S A 107(5):2078–2081. doi: 10.1073/pnas.0909493107 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Fryxell JM, Holt RD (2013) Environmental change and the evolution of migration. Ecol 94(6):1274–1279. CrossRefGoogle Scholar
  14. Griswold CK, Taylor CM, Norris DR (2010) The evolution of migration in a seasonal environment. Proc R Soc Lond Ser B Biol Sci 277:2711–2720. doi: 10.1098/rspb.2010.0550 CrossRefGoogle Scholar
  15. Hanski I (1999) Metapopulation ecology. Oxford University Press, OxfordGoogle Scholar
  16. Hastings A (1983) Can spatial variation alone lead to selection for dispersal Theor Popul Biol 24(3):244–251. doi: 10.1016/0040-5809(83)90027-8 CrossRefGoogle Scholar
  17. Hein AM, Hou C, Gillooly JF (2012) Energetic and biomechanical constraints on animal migration distance. Ecol Lett 15(2):104–110. doi: 10.1111/j.1461-0248.2011.01714.x CrossRefPubMedGoogle Scholar
  18. Holdo RM, Holt RD, Fryxell JM (2009) Opposing rainfall and plant nutritional gradients best explain the wildebeest migration in the serengeti. The American Naturalist 173(4):431–445. doi: 10.1086/597229 CrossRefPubMedGoogle Scholar
  19. Holt RD, Barfield M (2001) On the relationship between the ideal free distribution and the evolution of dispersal. In: Nichols JD, Clobert J, Danchin E, Dhondt AA (eds) Dispersal. Oxford University Press, Oxford, pp 83–95Google Scholar
  20. Hubbard S, Babak P, Sigurdsson S, Magnusson K (2004) A model of the formation of fish schools and migrations of fish. Ecol Model 174(4):359–374. doi: 10.1016/j.ecolmodel.2003.06.006 CrossRefGoogle Scholar
  21. Hunter JD (2007) Matplotlib: a 2d graphics environment. Computing In Science & Engineering 9(3):90–95CrossRefGoogle Scholar
  22. Jones E, Oliphant T, Peterson P, et al. (2001) SciPy: open source scientific tools for Python.
  23. Kaitala A, Kaitala V, Lundberg P (1993) A theory of partial migration. Am Nat 142:59–81. doi: 10.1086/285529 CrossRefGoogle Scholar
  24. Kennedy JS (1985) Migration: Behavioral and ecological. In: Rankin MAR (ed) Migration: mechanisms and adaptive significance, marine science institute. The University of Texas at Austin, Austin, pp 5–26Google Scholar
  25. Lam KY, Munther D (2014) Invading the ideal free distribution. Discrete and Continuous Dynamical Systems - Series B 19(10):3219–3244. doi: 10.3934/dcdsb.2014.19.3219 CrossRefGoogle Scholar
  26. Lundberg P (1987) Partial bird migration and evolutionarily stable strategies. J Theor Biol 125(3):351–360. doi: 10.1016/S0022-5193(87)80067-X CrossRefGoogle Scholar
  27. Lundberg P (1988) The evolution of partial migration in birds. Trends Ecol Evol 3(7):172–175. doi: 10.1016/0169-5347(88)90035-3 CrossRefPubMedGoogle Scholar
  28. Mathias A, Kisdi È, Olivieri I (2001) Divergent evolution of dispersal in a heterogeneous landscape. Evolution 55(2):246–259. doi: 10.1111/j.0014-3820.2001.tb01290.x CrossRefPubMedGoogle Scholar
  29. McNamara JM, Houston AI, Collins EJ (2001) Optimality models in behavioral biology. SIAM Review 43(3):413–466. doi: 10.1137/S0036144500385263 CrossRefGoogle Scholar
  30. McPeek MA, Holt RD (1992) The evolution of dispersal in spatially and temporally varying environments. Am Nat 140(6):1010–1027. doi: 10.1086/285453 CrossRefGoogle Scholar
  31. Mylius SD, Diekmann O (1995) On evolutionarily stable life histories, optimization and the need to be specific about density dependence. Oikos 74(1):218–224. doi: 10.2307/3545651 CrossRefGoogle Scholar
  32. Pierce-Shimomura JT, Morse TM, Lockery SR (1999) The fundamental role of pirouettes in Caenorhabditis elegans chemotaxis. The Journal of Neuroscience 19(21):9557–9569. PubMedGoogle Scholar
  33. Python Software Foundation (2010) Python Language Reference, version 2.7.
  34. Reluga TC, Shaw AK (2014) Optimal migratory behavior in spatially-explicit seasonal environments. Discrete and Continuous Dynamical Systems - Series B 19(10):3359–3378. doi: 10.3934/dcdsb.2014.19.3359 CrossRefGoogle Scholar
  35. Reluga TC, Medlock J, Galvani AP (2009) The discounted reproductive number for epidemiology. Math Biosci Eng 6(2):377–393. doi: 10.3934/mbe.2009.6.377 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Shaw AK, Couzin ID (2013) Migration or residency? the evolution of movement behavior and information usage in seasonal environments. The American Naturalist 181(1):114–124. doi: 10.1086/668600 CrossRefPubMedGoogle Scholar
  37. Shaw AK, Levin SA (2011) To breed or not to breed: a model of partial migration. Oikos 120(12):1871–1879. doi: 10.1111/j.1600-0706.2011.19443.x CrossRefGoogle Scholar
  38. Shaw AK, Levin SA (2013) The evolution of intermittent breeding. J Math Biol 66(4–5):685–703. doi: 10.1007/s00285-012-0603-0 CrossRefPubMedGoogle Scholar
  39. SymPy Development Team (2013) SymPy: Python library for symbolic mathematics.
  40. Taylor CM, Norris DR (2007) Predicting conditions for migration: effects of density dependence and habitat quality. Biol Lett 3(3):280–283. doi: 10.1098/rsbl.2007.0053 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Thieme HR (2009) Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity. SIAM J Appl Math 70(1):188–211. doi: 10.1137/080732870 CrossRefGoogle Scholar
  42. Thorpe J (1994) Reproductive strategies in Atlantic salmon, Salmo salar L. Aquac Fish Manag 25:77–87Google Scholar
  43. Vélez-Espino LA, McLaughlin RL, Robillard M (2013) Ecological advantages of partial migration as a conditional strategy. Theor Popul Biol 85:1–11. doi: 10.1016/j.tpb.2013.01.004 CrossRefPubMedGoogle Scholar
  44. Williams T, Kelley C, et al. (2010) Gnuplot 4.4: an interactive plotting program.

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Departments of Mathematics and BiologyPenn State UniversityUniversity ParkUSA
  2. 2.Department of Ecology, Evolution and BehaviorUniversity of MinnesotaSaint PaulUSA

Personalised recommendations