Theoretical Ecology

, Volume 8, Issue 2, pp 207–223 | Cite as

A unifying gravity framework for dispersal

  • Eelke Jongejans
  • Olav Skarpaas
  • Matthew J. Ferrari
  • Eric S. Long
  • Joseph T. Dauer
  • Carrie M. Schwarz
  • Emily S. J. Rauschert
  • Randa Jabbour
  • David A. Mortensen
  • Scott A. Isard
  • David A. Lieb
  • Zeynep Sezen
  • Andrew G. Hulting
  • Katriona Shea


Most organisms disperse at some life-history stage, but different research traditions to study dispersal have evolved in botany, zoology, and epidemiology. In this paper, we synthesize concepts, principles, patterns, and processes in dispersal across organisms. We suggest a consistent conceptual framework for dispersal, which utilizes generalized gravity models. This framework will facilitate communication among research traditions, guide the development of dispersal models for theoretical and applied ecology, and enable common representation across taxonomic groups, encapsulating processes at the source and destination of movement, as well as during the intervening relocation process, while allowing each of these stages in the dispersal process to be addressed separately and in relevant detail. For different research traditions, certain parts of the dispersal process are less studied than others (e.g., seed release processes in plants and termination of dispersal in terrestrial and aquatic animals). The generalized gravity model can serve as a unifying framework for such processes, because it captures the general conceptual and formal components of any dispersal process, no matter what the relevant biological timescale involved. We illustrate the use of the framework with examples of passive (a plant), active (an animal), and vectored (a fungus) dispersal, and point out promising applications, including studies of dispersal mechanisms, total dispersal kernels, and spatial population dynamics.


Conceptual framework Dispersal patterns and processes Empirical and mechanistic models Migration Movement Serial and parallel processes 



We thank the Intercollege Graduate Degree Program in Ecology of the Pennsylvania State University for creating a stimulating environment where faculty and students from a wide range of disciplines meet and interact. We are grateful for the financial support from the Netherlands Organization for Scientific Research (NWO-meerwaarde grant 850.11.001 to EJ), the Norwegian Research Council (grant 161484/V10 to OS), and the US National Science Foundation (grants DEB-0315860 and DEB-0614065 to KS).


  1. Alba-Lynn C, Henk S (2010) Potential for ants and vertebrate predators to shape seed-dispersal dynamics of the invasive thistles Cirsium arvense and Carduus nutans in their introduced range (North America). Plant Ecol 210:291–301. doi: 10.1007/s11258-010-9757-2 Google Scholar
  2. Allen MR (2007) Measuring and modeling dispersal of adult zooplankton. Oecologia 153:135–143. doi: 10.1007/s00442-007-0704-4 PubMedGoogle Scholar
  3. Altizer SM, Thrall PH, Antonovics J (1998) Vector behavior and the transmission of anther-smut infection in Silene alba. Am Midl Nat 139:147–163. doi: 10.1674/0003-0031(1998)139[0147:VBATTO]2.0.CO;2 Google Scholar
  4. Armsworth PR (2008) Conditional dispersal, clines, and the evolution of dispersiveness. Theor Ecol 2:105–117. doi: 10.1007/s12080-008-0032-2 Google Scholar
  5. Aylor DE (2003) Spread of plant disease on a continental scale: role of aerial dispersal of pathogens. Ecology 84:1989–1997. doi: 10.1890/01-0619 Google Scholar
  6. Baker RR (1978) The evolutionary ecology of animal migration. Hodder & Stoughton, LondonGoogle Scholar
  7. Barrios JM, Verstraeten WW, Maes P, Aerts J-M, Farifteh J, Coppin P (2012) Using the gravity model to estimate the spatial spread of vector-borne diseases. Int J Environ Res Public Health 9:4346–4364. doi: 10.3390/ijerph9124346 PubMedCentralPubMedGoogle Scholar
  8. Bauer S, Hoye BJ (2014) Migratory animals couple biodiversity and ecosystem functioning worldwide. Science 344:1242552. doi: 10.1126/science.1242552 PubMedGoogle Scholar
  9. Berg RY (1983) Plant distribution as seen from plant dispersal—general principles and basic modes of plant dispersal. Sonderbände Naturwiss Ver Hamb 7:13–36Google Scholar
  10. Bharti N, Xia Y, Bjørnstad ON, Grenfell BT (2008) Measles on the edge: coastal heterogeneities and infection dynamics. PLoS ONE 3:e1941. doi: 10.1371/journal.pone.0001941 PubMedCentralPubMedGoogle Scholar
  11. Bilton DT, Freeland JR, Okamura B (2001) Dispersal in freshwater invertebrates. Annu Rev Ecol Syst 32:159–181. doi: 10.1146/annurev.ecolsys.32.081501.114016 Google Scholar
  12. Black WR (2003) Transportation: a geographical analysis. Guilford, New YorkGoogle Scholar
  13. Bonte D, Hovestadt T, Poethke H-J (2010) Evolution of dispersal polymorphism and local adaptation of dispersal distance in spatially structured landscapes. Oikos 119:560–566. doi: 10.1111/j.1600-0706.2009.17943.x Google Scholar
  14. Bossenbroek JM, Kraft CE, Nekola JC (2001) Prediction of long-distance dispersal using gravity models: zebra mussel invasion of inland lakes. Ecol Appl 11:1778–1788. doi: 10.1890/1051-0761(2001)011[1778:POLDDU]2.0.CO;2 Google Scholar
  15. Bowler DE, Benton TG (2005) Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics. Biol Rev 80:205–225. doi: 10.1017/S1464793104006645 PubMedGoogle Scholar
  16. Broadbend SR, Kendall DG (1953) The random walk of Trichostrongylus retortaeformis. Biometrics 9:460–466. doi: 10.2307/3001437 Google Scholar
  17. Brockmann D, Hufnagel L, Geisel T (2006) The scaling laws of human travel. Nature 439:462–465. doi: 10.1038/nature0429 PubMedGoogle Scholar
  18. Bubb DH, Thom TJ, Lucas MC (2004) Movement and dispersal of the invasive signal crayfish Pacifastacus leniusculus in upland rivers. Freshw Biol 49:357–368. doi: 10.1111/j.1365-2426.2003.01178.x Google Scholar
  19. Bullock JM, Kenward RE, Hails RS (eds) (2002) Dispersal ecology. Blackwell, OxfordGoogle Scholar
  20. Bullock JM, Shea K, Skarpaas O (2006) Measuring plant dispersal: an introduction to field methods and experimental design. Plant Ecol 186:217–234. doi: 10.1007/s11258-006-9124-5 Google Scholar
  21. Bullock JM, White SM, Prudhomme C, Tansey C, Perea R, Hooftman DAP (2012) Modelling spread of British wind-dispersed plants under future wind speeds in a changing climate. J Ecol 100:104–115. doi: 10.1111/j.1365-2745.2011.01910.x Google Scholar
  22. Burgiel S, Foote G, Orellana M, Perrault A (2006) Invasive alien species and trade: integrating prevention measures and international trade rules. Center for International Environmental Law, WashingtonGoogle Scholar
  23. Campbell CL, Madden LV (1990) Introduction to plant disease epidemiology. Wiley, New YorkGoogle Scholar
  24. Caplat P, Cheptou P-O, Diez J, Guisan A, Larson BMH, Macdougall AS, Peltzer DA, Richardson DM, Shea K, van Kleunen M, Zhang R, Buckley YM (2013) Movement, impacts and management of plant distributions in response to climate change: insights from invasions. Oikos 122:1265–1274. doi: 10.1111/j.1600-0706.2013.00430.x Google Scholar
  25. Carrasco LR, Mumford JD, MacLeod A, Harwood T, Grabenweger G, Leach AW, Knight JD, Baker RHA (2010) Unveiling human-assisted dispersal mechanisms in invasive alien insects: integration of spatial stochastic simulation and phenology models. Ecol Model 221:2068–2075. doi: 10.1016/j.ecolmodel.2010.05.012 Google Scholar
  26. Charnov EL (1976) Optimal foraging; the marginal value theorem. Theor Popul Biol 9:129–136PubMedGoogle Scholar
  27. Clark JS, Lewis M, Horvath L (2001) Invasion by extremes: population spread with variation in dispersal and reproduction. Am Nat 157:537–554. doi: 10.1086/319934 PubMedGoogle Scholar
  28. Clobert J, Ims RA, Rousset F (2004) Causes, mechanisms and consequences of dispersal. In: Hanski I, Gaggiotti OE (eds) Ecology, genetics and evolution of metapopulations. Elsevier, Burlington, pp 307–335Google Scholar
  29. Clobert J, Baguette M, Beton TG, Bullock JM (eds) (2012) Dispersal ecology and evolution. Oxford University PressGoogle Scholar
  30. Cohen JE, Roig M, Reuman DC, GoGwilt C (2008) International migration beyond gravity: a statistical model for use in population projections. Proc Natl Acad Sci U S A 105:15269–15274. doi: 10.1073/pnas.0808185105 PubMedCentralPubMedGoogle Scholar
  31. Côté H, Garant D, Robert K, Mainguy J, Pelletier F (2012) Genetic structure and rabies spread potential in raccoons: the role of landscape barriers and sex-biased dispersal. Evol Appl 5:393–404. doi: 10.1111/j.1752-4571.2012.00238.x PubMedCentralPubMedGoogle Scholar
  32. Cousens R, Dytham C, Law R (2008) Dispersal in plants: a population perspective. Oxford University PressGoogle Scholar
  33. Dauer JT, Mortensen DA, VanGessel MJ (2007) Spatial and temporal dynamics governing long distance dispersal of Conyza canadensis. J Appl Ecol 44:105–114. doi: 10.1111/j.1365-2664.2006.01256.x Google Scholar
  34. Dauer JT, Luschei EC, Mortensen DA (2009) Effects of landscape composition on spread of an herbicide-resistant weed. Landsc Ecol 24:735–747. doi: 10.1007/s10980-009-9345-9 Google Scholar
  35. De Moraes CM, Stanczyk NM, Betz HS, Pulido H, Sim DG, Read AF, Mescher MC (2014) Malaria-induced changes in host odors enhance mosquito attraction. Proc Natl Acad Sci U S A 111:11079–11084. doi: 10.1073/pnas.1405617111 PubMedCentralPubMedGoogle Scholar
  36. Dieckmann U, Law R, Metz JAJ (eds) (2000) The geometry of ecological interactions: simplifying spatial complexity. Cambridge University PressGoogle Scholar
  37. Diefenbach DR, Long ES, Rosenberry CS, Wallingford BD, Smith DR (2008) Modelling distribution of dispersal distances in male white-tailed deer. J Wildl Manag 72:1296–1303. doi: 10.2193/2007-436 Google Scholar
  38. Dingle H (1996) Migration: the biology of life on the move. Oxford University PressGoogle Scholar
  39. Elven R (ed) (2005) Norsk flora. Det Norske Samlaget, OsloGoogle Scholar
  40. Epanchin-Niell RS, Hastings A (2010) Controlling established invaders: integrating economics and spread dynamics to determine optimal management. Ecol Lett 13:528–541. doi: 10.1111/j.1461-0248.2010.01440.x PubMedGoogle Scholar
  41. Epanchin-Niell RS, Wilen JE (2012) Optimal spatial control of biological invasions. J Environ Econ Manag 63:260–270. doi: 10.1016/j.jeem.2011.10.003 Google Scholar
  42. Evans H, Oszako T (eds) (2007) Alien invasive species and international trade. Forest Res Inst, WarsawGoogle Scholar
  43. Ferrari MJ, Bjørnstad ON, Partain JL, Antonovics J (2006) A gravity model for the spread of a pollinator-borne plant pathogen. Am Nat 168:294–303. doi: 10.1086/506917 PubMedGoogle Scholar
  44. Finlay BJ (2002) Global dispersal of free-living microbial eukaryote species. Science 296:1061–1063. doi: 10.1126/science.1070710 PubMedGoogle Scholar
  45. Fischer SF, Poschlod P, Beinlich B (1996) Experimental studies on the dispersal of plants and animals on sheep in calcareous grasslands. J Appl Ecol 33:1206–1222. doi: 10.2307/2404699 Google Scholar
  46. Forman RTT, Gordon M (1986) Landscape ecology. Wiley, New YorkGoogle Scholar
  47. García C, Jordano P, Godoy JA (2007) Contemporary pollen and seed dispersal in a Prunus mahaleb population: patterns in distance and direction. Mol Ecol 16:1947–1955. doi: 10.1111/j.1365-294X.2006.03126.x PubMedGoogle Scholar
  48. Gaylord B, Reed DC, Raimondi PT, Washburn L, McLean SR (2002) A physically based model of macroalgal spore dispersal in the wave and current-dominated nearshore. Ecology 83:1239–1251. doi: 10.1890/0012-9658(2002)083[1239:APBMOM]2.0.CO;2 Google Scholar
  49. Greene DF, Calogeropoulos C (2002) Measuring and modelling seed dispersal of terrestrial plants. In: Bullock JM, Kenward RE, Hails RS (eds) Dispersal ecology. Blackwell, Oxford, pp 3–23Google Scholar
  50. Greene DF, Johnson EA (1989) A model of wind dispersal of winged or plumed seeds. Ecology 70:339–347. doi: 10.2307/1937538 Google Scholar
  51. Hanski I (1996) Metapopulation dynamics: from concepts and observations to predictive models. In: Hanski I, Gilpin ME (eds) Metapopulation biology, genetics and evolution. Academic, Ecology, pp 69–91Google Scholar
  52. Hanski I, Ovaskainen O (2000) The metapopulation capacity of a fragmented landscape. Nature 404:755–758. doi: 10.1038/35008063 PubMedGoogle Scholar
  53. Hastings A, Cuddington K, Davies KF, Dugaw CJ, Elmendorf S, Freestone A, Harrison S, Holland M, Lambrinos J, Malvadkar U, Melbourne BA, Moore K, Taylor C, Thomson D (2005) The spatial spread of invasions: new developments in theory and evidence. Ecol Lett 8:91–101. doi: 10.1111/j.1461-0248.2004.00687.x Google Scholar
  54. Hein AM, Gillooly JF (2011) Predators, prey, and transient states in the assembly of spatially structured communities. Ecology 92:549–555. doi: 10.1890/10-1922.1 PubMedGoogle Scholar
  55. Higgins SI, Nathan R, Cain ML (2003) Are long-distance dispersal events in plants usually caused by nonstandard means of dispersal? Ecology 84:1945–1956. doi: 10.1890/01-0616 Google Scholar
  56. Holden C (2006) Inching toward movement ecology. Science 313:779–782. doi: 10.1126/science.313.5788.779 PubMedGoogle Scholar
  57. Hughes L, Dunlop M, French K, Leishman MR, Rice B, Rodgerson L, Westoby M (1994) Predicting dispersal spectra: a minimal set of hypotheses based on plant attributes. J Ecol 82:933–950. doi: 10.2307/2261456 Google Scholar
  58. Huijbers CM, Nagelkerken IN, Debrot A, Jongejans E (2013) Geographic coupling of juvenile and adult habitat shapes spatial population dynamics of a coral reef fish. Ecology 94:1859–1870. doi: 10.1890/11-1759.1 PubMedGoogle Scholar
  59. Hulme PE, Bacher S, Kenis M, Klotz S, Kühn I, Minchin D, Nentwig W, Olenin S, Panov V, Pergl J, Pyšek P, Roques A, Sol D, Solarz W, Vilà M (2008) Grasping at the routes of biological invasions: a framework for integrating pathways into policy. J Appl Ecol 45:403–414. doi: 10.1111/j.1365-2664.2007.01442.x Google Scholar
  60. Ims RA, Yoccoz NG (1996) Studying transfer processes in metapopulations; emigration, migration and colonization. In: Hanski IA, Gilpin ME (eds) Metapopulation biology. Ecology, genetics and evolution. Academic, Ecology, pp 247–264Google Scholar
  61. Ingimarsdóttir M, Caruso T, Ripa J, Magnúsdóttir OB, Migliorini M, Hedlund K (2012) Primary assembly of soil communities: disentangling the effect of dispersal and local environment. Oecologia 170:745–754. doi: 10.1007/s00442-012-2334-8 PubMedGoogle Scholar
  62. Isard SA, Gage SH (2001) Flow of life in the atmosphere: an airscape approach to invasive organisms. Michigan State University PressGoogle Scholar
  63. Isard SA, Gage SH, Comtois P, Russo JM (2005) Principles of the atmospheric pathway for invasive species applied to soybean rust. BioScience 55:851–861. doi: 10.1641/0006-3568(2005)055[0851:POTAPF]2.0.CO;2 Google Scholar
  64. Isard SA, Barnes CW, Hambleton S, Anatti A, Russo JM, Tenuta A, Gay DA, Szabo LJ (2011) Predicting soybean rust incursions into the North American continental interior in 2007 and 2008 using crop monitoring, spore trapping, and aerobiological modeling. Plant Dis 95:1346–1357. doi: 10.1094/PDIS-01-11-0034 Google Scholar
  65. Jackson JK, McElravy EP, Resh VH (1999) Long-term movements of self-marked caddisfly larvae (Trichoptera: Sericostomatidae) in a California coastal mountain stream. Freshw Biol 42:525–536. doi: 10.1046/j.1365-2427.1999.00503.x Google Scholar
  66. Jansen PA, Hirsch BT, Emsens W-J, Zamora-Gutierrez V, Wikelski M, Kays R (2012) Thieving rodents as substitute dispersers of megafaunal seeds. Proc Natl Acad Sci U S A 109:12610–12615. doi: 10.5441/001/1.9t0m888q PubMedCentralPubMedGoogle Scholar
  67. Järemo J (2009) Evaluating spread of invaders from gravity scores—a way of using gravity models in ecology. Math Biosci 222:53–58. doi: 10.1016/j.mbs.2009.08.008 PubMedGoogle Scholar
  68. Johansson V, Lönnell N, Sundberg S, Hylander K (2014) Release thresholds for moss spores: the importance of turbulence and sporophyte length. J Ecol 102:721–729. doi: 10.1111/1365-2745.12245 Google Scholar
  69. Jongejans E, Telenius A (2001) Field experiments on seed dispersal by wind in ten umbellifers (Apiaceae). Plant Ecol 152:67–78. doi: 10.1023/A:1011467604469 Google Scholar
  70. Jongejans E, Pedatella N, Shea K, Skarpaas O, Auhl R (2007) Seed release by invasive thistles: the impact of plant and environmental factors. Proc Roy Soc B: Biol Sci 274:2457–2464. doi: 10.1098/rspb.2007.0190 Google Scholar
  71. Jongejans E, Skarpaas O, Shea K (2008) Dispersal, demography and spatial population models for conservation and control management. Perspect Plant Ecol Evol Syst 9:153–170. doi: 10.1016/j.ppees.2007.09.005 Google Scholar
  72. Jongejans E, Allen MR, Leib AE, Marchetto KM, Pedatella NM, Peterson-Smith J, Rauschert ESJ, Ruggiero DC, Russo LA, Ruth LE, Sezen Z, Skarpaas O, Teller BJ, Warg LA, Yang S, Zhang R, Shea K (2011) Spatial dynamics of invasive Carduus thistles. In: Chan F, Marinova D, Anderssen RS (eds) MODSIM2011, 19th International Congress on Modeling and Simulation, pp. 2514–2520Google Scholar
  73. Jongejans E, Silverman EJ, Skarpaas O, Shea K (2015) Post-dispersal seed removal of Carduus nutans and C. acanthoides by insects and small mammals. Ecol Res. doi: 10.1007/s11284-014-1224-4
  74. Jonsen ID, Myers RA, James MC (2006) Robust hierarchical state-space models reveal diel variation in travel rates of migrating leatherback turtles. J Anim Ecol 75:1046–1057. doi: 10.1111/j.1365-2656.2006.01129.x PubMedGoogle Scholar
  75. Jordano P, García C, Godoy JA, García-Castaño JL (2007) Differential contribution of frugivores to complex seed dispersal patterns. Proc Natl Acad Sci U S A 104:3278–3282. doi: 10.1073/pnas.0606793104 PubMedCentralPubMedGoogle Scholar
  76. Katul GG, Porporato A, Nathan R, Siquiera M, Soons MB, Poggi D, Horn HS, Levin SA (2005) Mechanistic analytical models for long-distance seed dispersal by wind. Am Nat 166:368–381. doi: 10.1086/432589 PubMedGoogle Scholar
  77. Kavathekar D, Mueller T, Fagan WF (2013) Introducing AMV (animal movement visualizer), a visualization tool for animal movement data from satellite collars and radiotelemetry. Ecol Inf 15:91–95. doi: 10.1016/j.ecoinf.2012.12.005 Google Scholar
  78. Kelly N, Cousens RD, Taghizadeh MS, Hanan JS, Mouillot D (2013) Plants as populations of release sites for seed dispersal: a structural-statistical analysis of the effects of competition on Raphanus raphanistrum. J Ecol 101:878–888. doi: 10.1111/1365-2745.12097 Google Scholar
  79. Koenig WD, Van Vuren D, Hooge PN (1996) Detectability, philopatry, and the distribution of dispersal distances in vertebrates. Trends Ecol Evol 11:514–517. doi: 10.1016/S0169-5347(96)20074-6 PubMedGoogle Scholar
  80. Kot M, Lewis MA, van den Driessche P (1996) Dispersal data and the spread of invading organisms. Ecology 77:2027–2042. doi: 10.2307/2265698 Google Scholar
  81. Krings G, Calabrese F, Ratti C, Blondel VD (2009) Urban gravity: a model for inter-city telecommunication flows. J Stat Mech Theory Exp L07003. doi:  10.1088/1742-5468/2009/07/L07003
  82. Kuparinen A (2006) Mechanistic models for wind dispersal. Trends Plant Sci 11:297–301. doi: 10.1016/j.tplants.2006.04.006 Google Scholar
  83. Le Corff J, Horvitz CC (2005) Population growth versus population spread of an ant-dispersed neotropical herb with a mixed reproductive strategy. Ecol Model 188:41–51. doi: 10.1016/j.ecolmodel.2005.05.009 Google Scholar
  84. Leung B, Roura-Pascual N, Bacher S, Heikkilä J, Brotons L, Burgman MA, Dehnen-Schmutz K, Essl F, Hulme PE, Richardson DM, Sol D, Vilà M (2012) TEASIng apart alien species risk assessments: a framework for best practices. Ecol Lett 15:1475–1493. doi: 10.1111/ele.12003 PubMedGoogle Scholar
  85. Leuven R, van der Velde G, Baijens I, Snijders J, van der Zwart C, Lenders H, bij de Vaate A (2009) The river Rhine: a global highway for dispersal of aquatic invasive species. Biol Invasions 11:1989–2008. doi: 10.1007/s10530-009-9491-7 Google Scholar
  86. Levin LA (2006) Recent progress in understanding larval dispersal: new directions and digressions. Integr Comp Biol 46:282–297. doi: 10.1093/icb/icj024 PubMedGoogle Scholar
  87. Levin SA, Muller-Landau HC, Nathan R, Chave J (2003) The ecology and evolution of seed dispersal: a theoretical perspective. Annu Rev Ecol Evol Syst 34:575–604. doi: 10.1146/annurev.ecolsys.34.011802.132428 Google Scholar
  88. Lisovski S, Hewson CM, Klaassen RHG, Korner-Nievergelt F, Kristensen MW, Hahn S (2012) Geolocation by light: accuracy and precision affected by environmental factors. Methods Ecol Evol 3:603–612. doi: 10.1111/j.2041-210X.2012.00185.x Google Scholar
  89. Long ES (2005) Landscape and demographic influences on dispersal of white-tailed deer. Intercollege Graduate Degree Program in Ecology. Pennsylvania State University, p. 104Google Scholar
  90. Long ES, Diefenbach DR, Rosenberry CS, Wallingford BD, Grund MD (2005) Forest cover influences dispersal distance of white-tailed deer. J Mammal 86:623–629. doi: 10.1644/1545-1542(2005)86[623:FCIDDO]2.0.CO;2 Google Scholar
  91. Long ES, Diefenbach DR, Rosenberry CS, Wallingford BD (2008) Multiple proximate and ultimate causes of natal dispersal in white-tailed deer. Behav Ecol 19:1235–1242. doi: 10.1093/beheco/arn082 Google Scholar
  92. Long ES, Diefenbach DR, Wallingford BD, Rosenberry CS (2010) Influence of roads, rivers, and mountains on natal dispersal of white-tailed deer. J Wildl Manag 74:1242–1249. doi: 10.1111/j.1937-2817.2010.tb01244.x Google Scholar
  93. Lowen AC, Mubareka S, Steel J, Palese P (2007) Influenza virus transmission is dependent on relative humidity and temperature. PLoS Pathog 3:e151. doi: 10.1371/journal.ppat.0030151 PubMedCentralGoogle Scholar
  94. MacIsaac HJ, Robbins TC, Lewis MA (2002) Modeling ships’ ballast water as invasion threats to the Great Lakes. Can J Fish Aquat Sci 59:1245–1256. doi: 10.1139/F02-090 Google Scholar
  95. Maher SP, Kramer AM, Pulliam JT, Zokan MA, Bowden SE, Barton HD, Magori K, Drake JM (2012) Spread of white-nose syndrome on a network regulated by geography and climate. Nat Commun 3:1306. doi: 10.1038/ncomms2301 PubMedGoogle Scholar
  96. Marchetto KM, Jongejans E, Shea K, Isard SA (2010) Plant spatial arrangement affects projected invasion speeds of two invasive thistles. Oikos 119:1462–1468. doi: 10.1111/j.1600-0706.2010.18329.x Google Scholar
  97. Marchetto KM, Jongejans E, Shea K, Auhl R (2012) Water loss from flower heads predicts seed release in two invasive thistles. Plant Ecol Divers 5:57–65. doi: 10.1080/17550874.2012.667841 Google Scholar
  98. Marchetto KM, Shea K, Kelly D, Groenteman R, Sezen Z, Jongejans E (2014) Unrecognized impact of a biocontrol agent on the spread rate of an invasive thistle. Ecol Appl 24:1178–1187. doi: 10.1890/13-1309.1 PubMedGoogle Scholar
  99. Matthysen E (2005) Density-dependent dispersal in birds and mammals. Ecography 28:403–416. doi: 10.1111/j.0906-7590.2005.04073.x Google Scholar
  100. Morales JM, Moorcroft PR, Matthiopoulos J, Frair JL, Kie JG, Powell RA, Merrill EH, Haydon DT (2010) Building the bridge between animal movement and population dynamics. Phil Trans Roy Soc B Biol Sci 365:2289–2301. doi: 10.1098/rstb.2010.0082 Google Scholar
  101. Mueller T, Olson KA, Dressler G, Leimgruber P, Fuller TK, Nicolson C, Novaro AJ, Bolgeri MJ, Wattles D, DeStefano S, Calabrese JM, Fagan WF (2011) How landscape dynamics link individual- to population-level movement patterns: a multispecies comparison of ungulate relocation data. Glob Ecol Biogeogr 20:683–694. doi: 10.1111/j.1466-8238.2010.00638.x Google Scholar
  102. Muirhead JR, MacIsaac HJ (2011) Evaluation of stochastic gravity model selection for use in estimating non-indigenous species dispersal and establishment. Biol Invasions 13:2445–2458. doi: 10.1007/s10530-011-0070-3 Google Scholar
  103. Muirhead JR, Lewis MA, MacIsaac HJ (2011) Prediction and error in multi-stage models for spread of aquatic non-indigenous species. Divers Distrib 17:323–337. doi: 10.1111/j.1472-4642.2011.00745.x Google Scholar
  104. Muller-Landau HC, Wright SJ, Calderón O, Condit R, Hubbell SP (2008) Interspecific variation in primary seed dispersal in a tropical forest. J Ecol 96:653–667. doi: 10.1111/j.1365-2745.2008.01399.x Google Scholar
  105. Münzbergová Z, Herben T (2005) Seed, dispersal, microsite, habitat and recruitment limitation: identification of terms and concepts in studies of limitations. Oecologia 145:1–8. doi: 10.1007/s00442-005-0052-1 PubMedGoogle Scholar
  106. Nathan R (2001) Dispersal biogeography. In: Levin SA (ed) Encyclopedia of biodiversity. Academic, San Diego, pp 127–152Google Scholar
  107. Nathan R (2003) Seeking the secrets of dispersal. Trends Ecol Evol 18:275–276. doi: 10.1016/S0169-5347(03)00063-6 Google Scholar
  108. Nathan R (2006) Long-distance dispersal of plants. Science 313:786–788. doi: 10.1126/science.1124975 PubMedGoogle Scholar
  109. Nathan R (2007) Total dispersal kernels and the evaluation of diversity and similarity in complex dispersal systems. In: Dennis AJ, Schupp EW, Green RJ, Wescott DA (eds) Seed dispersal: theory and its application in a changing world. CABI, Wallingford, pp 252–276Google Scholar
  110. Nathan R, Getz WM, Revilla E, Holyoak M, Kadmon R, Saltz D, Smouse PE (2008) A movement ecology paradigm for unifying organismal movement research. Proc Natl Acad Sci U S A 105:19052–19059. doi: 10.1073/pnas.0800375105 PubMedCentralPubMedGoogle Scholar
  111. Nathan R, Katul GG, Bohrer G, Kuparinen A, Soons MB, Thompson SE, Trakhtenbrot A, Horn HS (2011) Mechanistic models of seed dispersal by wind. Theor Ecol 4:113–132. doi: 10.1007/s12080-011-0115-3 Google Scholar
  112. Nathan R, Klein E, Robledo-Arnuncio JJ, Revilla E (2012). Dispersal kernels: review. In: Clobert J, Baguette M, Benton TG, Bullock JM (eds) Dispersal ecology and evolution. Oxford University Press, pp. 187–210Google Scholar
  113. Newton I (1687) Philosophiæ Naturalis Principia Mathematica. LondonGoogle Scholar
  114. Noti JD, Blachere FM, McMillen CM, Lindsley WG, Kashon ML, Slaughter DR, Beezhold DH (2013) High humidity leads to loss of infectious influenza virus from simulated coughs. PLoS ONE 8:e57485. doi: 10.1371/journal.pone.0057485 PubMedCentralPubMedGoogle Scholar
  115. Ohashi K, Yahara T (1999) How long to stay on, and how often to visit a flowering plant? A model for foraging strategy when floral displays vary in size. Oikos 86:386–392Google Scholar
  116. Okubo A, Ackerman JD, Swaney DP (2001) Passive diffusion in ecosystems. In: Okubo A, Levin SA (eds) Diffusion and ecological problems: modern perspectives. Springer, New York, pp 31–106Google Scholar
  117. Ouborg NJ, Piquot Y, van Groenendael JM (1999) Population genetics, molecular markers and the study of dispersal in plants. J Ecol 87:551–568. doi: 10.1046/j.1365-2745.1999.00389.x Google Scholar
  118. Pakeman RJ (2001) Plant migration rates and seed dispersal mechanisms. J Biogeogr 28:795–800. doi: 10.1046/j.1365-2699.2001.00581.x Google Scholar
  119. Pazos GE, Greene DF, Katul G, Bertiller MB, Soons MB (2013) Seed dispersal by wind: towards a conceptual framework of seed abscission and its contribution to long-distance dispersal. J Ecol 101:889–904. doi: 10.1111/1365-2745.12103 Google Scholar
  120. Peterson-Smith J, Shea K (2010) Seedling emergence and early survival of Carduus spp. in three habitats with press and pulse disturbances. J Torrey Bot Soc 137:287–296. doi: 10.3159/09-RA-070R1.1 Google Scholar
  121. Petrovskii S, Morozov A (2009) Dispersal in a statistically structured population: fat tails revisited. Am Nat 173:278–289. doi: 10.1086/595755 PubMedGoogle Scholar
  122. Petrovskii S, Mashanova A, Jansen VAA (2011) Variation in individual walking behavior creates the impression of a Lévy flight. Proc Natl Acad Sci U S A 108:8704–8707. doi: 10.1073/pnas.1015208108 PubMedCentralPubMedGoogle Scholar
  123. Portnoy S, Willson MF (1993) Seed dispersal curves: behavior of the tail of the distribution. Evol Ecol 7:25–44. doi: 10.1007/BF01237733 Google Scholar
  124. Potapov A, Muirhead JR, Lele SR, Lewis MA (2011) Stochastic gravity models for modeling lake invasions. Ecol Model 222:964–972. doi: 10.1016/j.ecolmodel.2010.07.024 Google Scholar
  125. Ravenstein EG (1885) The laws of migration. J Roy Stat Soc 48:167–235. doi: 10.2307/2979181 Google Scholar
  126. Redbo-Torstensson P, Telenius A (1995) Primary and secondary seed dispersal by wind and water in Spergularia salina. Ecography 18:230–237. doi: 10.1111/j.1600-0587.1995.tb00126.x/ Google Scholar
  127. Ribbens E, Silander JA, Pacala SW (1994) Seedling recruitment in forests: calibrating models to predict patterns of tree seedling dispersion. Ecology 75:1794–1806. doi: 10.2307/1939638 Google Scholar
  128. Robinson SJ, Samuel MD, Lopez DL, Shelton P (2012) The walk is never random: subtle landscape effects shape gene flow in a continuous white-tailed deer population in the Midwestern United States. Mol Ecol 21:4190–4205. doi: 10.1111/j.1365-294X.2012.05681.x PubMedGoogle Scholar
  129. Ronce O (2007) How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annu Rev Ecol Evol Syst 38:231–253. doi: 10.1146/annurev.ecolsys.38.091206.095 Google Scholar
  130. Rothlisberger JD, Lodge DM (2011) Limitations of gravity models in predicting the spread of Eurasian watermilfoil. Conserv Biol 25:64–72. doi: 10.1111/j.1523-1739.2010.01589.x PubMedGoogle Scholar
  131. Roy JR (2004) Spatial interaction modelling. A regional science context. Springer, BerlinGoogle Scholar
  132. Schippers P, Jongejans E (2005) Release thresholds strongly determine the range of seed dispersal by wind. Ecol Model 185:93–103. doi: 10.1016/j.ecolmodel.2004.11.018 Google Scholar
  133. Schupp EW, Jordano P, Gómez JM (2010) Seed dispersal effectiveness revisited: a conceptual review. New Phytol 188:333–353. doi: 10.1111/j.1469-8137.2010.03402.x PubMedGoogle Scholar
  134. Schurr FM, Bond WJ, Midgley GF, Higgins SI (2005) A mechanistic model for secondary seed dispersal by wind and its experimental validation. J Ecol 93:1017–1028. doi: 10.1111/j.1365-2745.2005.01018.x Google Scholar
  135. Shea K (2007) How the wood moves. Science 315:1231–1232. doi: 10.1126/science.1136096 PubMedGoogle Scholar
  136. Shea K, Amarasekare P, Kareiva P, Mangel M, Moore J, Murdoch WW, Noonburg EG, Parma A, Pascual MA, Possingham HP, Wilcox W, Yu D (1998) Management of populations in conservation, harvesting and control. Trends Ecol Evol 13:371–375. doi: 10.1016/S0169-5347(98)01381-0 PubMedGoogle Scholar
  137. Shea K, Metaxas A, Young CR, Fisher CR (2008) Processes and interactions in macrofaunal assemblages at hydrothermal vents: a modelling perspective. In: Lowell RP, Seewald JS, Metaxas A, Perfit MR (eds) Magma to microbe: modeling hydrothermal processes at oceanic spreading centers. Am Geophys Union: Geophys Monogr, pp. 259–274Google Scholar
  138. Shea K, Jongejans E, Skarpaas O, Kelly D, Sheppard A (2010) Optimal management strategies to control local population growth or population spread may not be the same. Ecol Appl 20:1148–1161. doi: 10.1890/09-0316.1 PubMedGoogle Scholar
  139. Shurin JB, Cottenie K, Hillebrand H (2009) Spatial autocorrelation and dispersal limitation in freshwater organisms. Oecologia 159:151–159. doi: 10.1007/s00442-008-1174-z PubMedGoogle Scholar
  140. Skarpaas O, Shea K (2007) Dispersal patterns, dispersal mechanisms and invasion wave speeds for invasive thistles. Am Nat 170:421–430. doi: 10.1086/519854 PubMedGoogle Scholar
  141. Skarpaas O, Shea K, Bullock JM (2005) Optimising dispersal study design by Monte Carlo simulation. J Appl Ecol 42:731–739. doi: 10.1111/j.1365-2664.2005.01056.x Google Scholar
  142. Skarpaas O, Auhl R, Shea K (2006) Environmental variability and the initiation of dispersal: turbulence strongly increases seed release. Proc Roy Soc B Biol Sci 273:751–756. doi: 10.1098/rspb.2005.3366 Google Scholar
  143. Skarpaas O, Shea K, Jongejans E (2011) Watch your time step: trapping and tracking dispersal in autocorrelated environments. Methods Ecol Evol 2:407–415. doi: 10.1111/j.2041-210X.2010.00086.x Google Scholar
  144. Skelsey P, With KA, Garrett KA (2012) Why dispersal should be maximized at intermediate scales of heterogeneity. Theor Ecol 6:203–211. doi: 10.1007/s12080-012-0171-3 PubMedCentralPubMedGoogle Scholar
  145. Skuldt LH, Mathews NE, Oyer AM (2008) White-tailed deer movements in a chronic wasting disease area in South-Central Wisconsin. J Wildl Manag 72:115–1160. doi: 10.2193/2006-469 Google Scholar
  146. Smith DL, Lucey B, Waller LA, Childs JE, Real LA (2002) Predicting the spatial dynamics of rabies epidemics on heterogeneous landscapes. Proc Natl Acad Sci U S A 99:3668–3672. doi: 10.1073/pnas.042400799 PubMedCentralPubMedGoogle Scholar
  147. Smith RF, Alexander LC, Lamp WO (2009) Dispersal by terrestrial stages of stream insects in urban watersheds: a synthesis of current knowledge. J N Am Benthol Soc 28:1022–1037. doi: 10.1899/08-176.1 Google Scholar
  148. Snäll T, O’Hara RB, Arjas E (2007) A mathematical and statistical framework for modelling dispersal. Oikos 116:1037–1050. doi: 10.1111/j.2007.0030-1299.15604.x Google Scholar
  149. Snäll T, O’Hara RB, Ray C, Collinge SK (2008) Climate-driven spatial dynamics of plague among prairie dog colonies. Am Nat 171:238–248. doi: 10.1086/525051 PubMedGoogle Scholar
  150. Soons MB, Bullock JM (2008) Non-random seed abscission, long-distance wind dispersal and plant migration rates. J Ecol 96:581–590. doi: 10.1111/j.1365-2745.2007.0 Google Scholar
  151. Stenseth NC, Lidicker WZ (eds) (1992) Animal dispersal: small mammals as a model. Chapman & Hall, LondonGoogle Scholar
  152. Stiles EW, White DW (1986) Seed deposition patterns: influence of season, nutrients, and vegetation structure. In: Estrada A, Flemming TH (eds) Frugivores and seed dispersal. Dr W Junk, Dordrecht, pp 45–54Google Scholar
  153. Stockmarr A (2002) The distribution of particles in the plane dispersed by a simple 3-dimensional diffusion process. J Math Biol 45:461–469. doi: 10.1007/s002850200157 PubMedGoogle Scholar
  154. Sutherland GD, Harestad AS, Price K, Lertzman KP (2000) Scaling of natal dispersal distances in terrestrial birds and mammals. Conserv Ecol 4:16Google Scholar
  155. Sutrave S, Scoglio C, Isard SA, Hutchinson JMS, Garrett KA (2012) Identifying highly connected counties compensates for resource limitations when evaluating national spread of an invasive pathogen. PLoS ONE 7:e37793. doi: 10.1371/journal.pone.0037793 PubMedCentralPubMedGoogle Scholar
  156. Takken W, Knols BGJ (1999) Odor-mediated behavior of Afrotropical malaria mosquitoes. Annu Rev Entomol 44:131–157. doi: 10.1146/annurev.ento.44.1.131 PubMedGoogle Scholar
  157. Taylor LR (1986) Synoptic dynamics, migration and the Rothamsted insect survey. J Anim Ecol 55:1–38. doi: 10.2307/4690 Google Scholar
  158. Teller BJ, Campbell C, Shea K (2014) Dispersal under duress: can stress enhance the performance of a passively dispersed species? Ecology 95:2694–2698. doi: 10.1890/14-0474.1 Google Scholar
  159. Thomas RW, Hugget RJ (1980) Modeling in geography. A mathematical approach. Barnes & Noble, TotowaGoogle Scholar
  160. Thomson FJ, Moles AT, Auld TD, Kingsford RT (2011) Seed dispersal distance is more strongly correlated with plant height than with seed mass. J Ecol 99:1299–1307. doi: 10.1111/j.1365-2745.2011.01867.x Google Scholar
  161. Travis JMJ, Mustin K, Bartoń KA, Benton TG, Clobert J, Delgado MM, Dytham C, Hovestadt T, Palmer SCF, Van Dyck H, Bonte D (2012) Modelling dispersal: an eco-evolutionary framework incorporating emigration, movement, settlement behaviour and the multiple costs involved. Methods Ecol Evol 3:628–641. doi: 10.1111/j.2041-210X.2012.00193.x Google Scholar
  162. Tufto J, Engen S, Hindar K (1997) Stochastic dispersal processes in plant populations. Theor Popul Biol 52:16–26. doi: 10.1006/tpbi.1997.1306 PubMedGoogle Scholar
  163. Turchin P (1998) Quantitative analysis of movement: measuring and modeling population redistribution in animals and plants. Sinauer, SunderlandGoogle Scholar
  164. Urban MC, Zarnetske PL, Skelly DK (2013) Moving forward: dispersal and species interactions determine biotic responses to climate change. Ann N Y Acad Sci 1297:44–60. doi: 10.1111/nyas.12184 PubMedGoogle Scholar
  165. van der Pijl L (1982) Principles of dispersal in higher plants. Springer, BerlinGoogle Scholar
  166. van Noordwijk CGE, Jongejans E, Boeye J, Remke E, Siepel H, Berg MP, Bonte D (2014) A multi-generation perspective on functional connectivity for arthropods in fragmented landscapes. In: van Noordwijk CGE (PhD thesis) Through arthropod eyes. Gaining mechanistic understanding of calcareous grassland diversity. Radboud University Nijmegen, pp. 127–145Google Scholar
  167. van Putten B, Visser MD, Muller-Landau HC, Jansen PA (2012) Distorted-distance models for directional dispersal: a general framework with application to a wind-dispersed tree. Methods Ecol Evol 3:642–652. doi: 10.1111/j.2041-210X.2012.00208.x Google Scholar
  168. Vander Wall SB (1992) The role of animals in dispersing a “wind-dispersed” pine. Ecology 73:614–621. doi: 10.2307/1940767 Google Scholar
  169. von der Lippe M, Bullock JM, Kowarik I, Knopp T, Wichmann MC (2013) Human-mediated dispersal of seeds by the airflow of vehicles. PLoS ONE 8:e52733. doi: 10.1371/journal.pone.0052733 PubMedCentralPubMedGoogle Scholar
  170. Wichmann M, Alexander MJ, Soons MB, Galsworthy S, Dunne L, Gould R, Fairfax C, Niggemann M, Hails RS, Bullock JM (2009) Human-mediated dispersal of seeds over long distances. Proc Roy Soc B Biol Sci 276:523–532. doi: 10.1098/rspb.2008.1131 Google Scholar
  171. Willson MF (1993) Dispersal mode, seed shadows and colonization patterns. Vessgetatio 107(108):261–280. doi: 10.1007/BF00052229 Google Scholar
  172. Xia Y, Bjørnstad ON, Grenfell BT (2004) Measles metapopulation dynamics: a gravity model for epidemiological coupling and dynamics. Am Nat 164:267–281. doi: 10.1086/422341 PubMedGoogle Scholar
  173. Yang S, Ferrari MJ, Shea K (2011) Pollinator behavior mediates negative interactions between two congeneric invasive plant species. Am Nat 177:110–118. doi: 10.1086/657433 PubMedGoogle Scholar
  174. Yates G, Boyce MS (2012) Dispersal, animal. In: Hastings A, Gross L (eds) Encyclopedia of theoretical ecology. University of California Press, pp. 188–192Google Scholar
  175. Zhang R, Jongejans E, Shea K (2011) Warming increases the spread of an invasive thistle. PLoS ONE 6:e21725. doi: 10.1371/journal.pone.0021725 PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Eelke Jongejans
    • 1
  • Olav Skarpaas
    • 2
  • Matthew J. Ferrari
    • 3
  • Eric S. Long
    • 4
  • Joseph T. Dauer
    • 5
  • Carrie M. Schwarz
    • 6
  • Emily S. J. Rauschert
    • 7
  • Randa Jabbour
    • 8
  • David A. Mortensen
    • 9
  • Scott A. Isard
    • 10
  • David A. Lieb
    • 11
  • Zeynep Sezen
    • 12
  • Andrew G. Hulting
    • 13
  • Katriona Shea
    • 14
  1. 1.Department of Animal Ecology and Ecophysiology, Institute for Water and Wetland ResearchRadboud University NijmegenNijmegenThe Netherlands
  2. 2.Norwegian Institute for Nature ResearchOsloNorway
  3. 3.Center for Infectious Disease Dynamics, Department of BiologyThe Pennsylvania State UniversityUniversity ParkUSA
  4. 4.Department of BiologySeattle Pacific UniversitySeattleUSA
  5. 5.School of Natural ResourcesUniversity of Nebraska-LincolnLincolnUSA
  6. 6.Department of BiologyWestern Washington UniversityBellinghamUSA
  7. 7.Department of Biological, Geological and Environmental SciencesCleveland State UniversityClevelandUSA
  8. 8.Department of Plant SciencesUniversity of WyomingLaramieUSA
  9. 9.Plant Sciences DepartmentThe Pennsylvania State UniversityUniversity ParkUSA
  10. 10.Department of Plant Pathology and Environmental Microbiology and Department of MeteorologyThe Pennsylvania State UniversityUniversity ParkUSA
  11. 11.Western Pennsylvania Conservancy and Pennsylvania Fish and Boat CommissionBellefonteUSA
  12. 12.Department of EntomologyUniversity of MinnesotaSt. PaulUSA
  13. 13.Department of Crop and Soil ScienceOregon State UniversityCorvallisUSA
  14. 14.Department of BiologyThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations