Theoretical Ecology

, Volume 7, Issue 4, pp 423–434

Trophic niche-space imaging, using resource and consumer traits



The strength of trophic (feeding) links between two species depends on the traits of both the consumer and the resource. But which traits of consumer and resource have to be measured to predict link strengths, and how many? A novel theoretical framework for systematically determining trophic traits from empirical data was recently proposed. Here we demonstrate this approach for a group of 14 consumer fish species (Labeobarbus spp., Cyprinidae) and 11 aquatic resource categories coexisting in Lake Tana in northern Ethiopia, analysing large sets of phenotypic consumer and resource traits with known roles in feeding ecology. We systematically reconstruct structure and geometry of trophic niche space, in which link strengths are predicted by the distances between consumers and resources. These distances are then represented graphically resulting in an image of trophic niche space and its occupancy. We find trophic niche to be multidimensional. Among the models we analysed, one with two resource and two consumer traits had the highest predictive power for link strength. Results further suggest that trophic niche space has a pseudo-Euclidean geometry, meaning that link strength decays with distance in some dimensions of trophic niche space, while it increases with distance in other dimensions. Our analysis not only informs theory and modelling but may also be helpful for predicting trophic link strengths for pairs of other, similar species.


Interaction strength Trophic links Food-web model Trophic traits Niche space Cyprinidae Fishes 

Supplementary material

12080_2014_229_MOESM1_ESM.pdf (218 kb)
Online Resource 1(PDF 218 kb)
12080_2014_229_MOESM2_ESM.pdf (228 kb)
Online Resource 2(PDF 228 kb)
12080_2014_229_MOESM3_ESM.pdf (94 kb)
Online Resource 3(PDF 93.8 kb) (13 kb)
Online Resource 4(ZIP 13 kb)


  1. Albrecht GH, Gelvin BR, Hartman SE (1993) Ratios as a size adjustment in morphometrics. Am J Phys Anthropol 91(4):441–468. doi:10.1002/ajpa.1330910404 PubMedCrossRefGoogle Scholar
  2. Allesina S (2011) Predicting trophic relations in ecological networks: a test of the Allometric Diet Breadth Model. J Theor Biol 279(1):161–168. doi:10.1016/j.jtbi.2010.06.040 PubMedCrossRefGoogle Scholar
  3. Allesina S, Alonso D, Pascual M (2008) A general model for food web structure. Science 320(5876):658–661. doi:10.1126/science.1156269 PubMedCrossRefGoogle Scholar
  4. Arditi R, Michalski J, Hirzel AH (2005) Rheagogies: modelling non-trophic effects in food webs. Ecol Complex 2(3):249–258. doi:10.1016/j.ecocom.2005.04.003 CrossRefGoogle Scholar
  5. Barnett A, Bellwood DR, Hoey AS (2006) Trophic ecomorphology of cardinalfish. Mar Ecol Prog Ser 322:249–257. doi:10.3354/meps322249 CrossRefGoogle Scholar
  6. Berlow EL, Dunne JA, Martinez ND, Stark PB, Williams RJ, Brose U (2009) Simple prediction of interaction strengths in complex food webs. Proc Natl Acad Sci 106(1):187–191. doi:10.1073/pnas.0806823106 PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bersier L-F (2007) A history of the study of ecological networks. In: Képès F (ed) Biological networks. World Scientific, New Jersey, pp 365–421. doi:10.1016/j.ecocom.2007.06.013 CrossRefGoogle Scholar
  8. Bhat A (2005) Ecomorphological correlates in tropical stream fishes of southern India. Environ Biol Fish 73(2):211–225. doi:10.1007/s10641-005-0561-0 CrossRefGoogle Scholar
  9. Carlson RL, Wainwright PC (2010) The ecological morphology of darter fishes (Percidae: Etheostomatinae). Biol J Linn Soc 100(1):30–45. doi:10.1111/j.1095-8312.2010.01417.x CrossRefGoogle Scholar
  10. Cohen JE (1977) Food webs and the dimensionality of trophic niche space. Proc Natl Acad Sci 74(10):4533–4536PubMedCrossRefPubMedCentralGoogle Scholar
  11. de Graaf M, Megens H-J, Samallo J, Sibbing F (2010) Preliminary insight into the age and origin of the Labeobarbus fish species flock from Lake Tana (Ethiopia) using the mtDNA cytochrome b gene. Mol Phylogenet Evol 54(2):336–343. doi:10.1016/j.ympev.2009.10.029 PubMedCrossRefGoogle Scholar
  12. de Ruiter PC, Neutel A-M, Moore JC (1995) Energetics, patterns of interaction strengths and stability in real ecosystems. Science 269:1257–1260. doi:10.1126/science.269.5228.1257 PubMedCrossRefGoogle Scholar
  13. Dejen E, Vijverberg J, de Graaf M, Sibbing FA (2006) Predicting and testing resource partitioning in a tropical fish assemblage of zooplanktivorous ‘barbs’: an ecomorphological approach. J Fish Biol 69(5):1356–1378. doi:10.1111/j.1095-8649.2006.01197.x CrossRefGoogle Scholar
  14. Development Core Team R (2010) R: A language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  15. Eklöf A, Jacob U, Kopp J, Bosch J, Castro-Urgal R, Chacoff NP, Dalsgaard B, de Sassi C, Galetti M, Guimarães PR, Lomáscolo SB, Martín González AM, Pizo MA, Rader R, Rodrigo A, Tylianakis JM, Vázquez DP, Allesina S (2013) The dimensionality of ecological networks. Ecol Lett 16(5):577–583. doi:10.1111/ele.12081 PubMedCrossRefGoogle Scholar
  16. Emmerson MC, Montoya JM, Woodward G (2005) Body size, interaction strength, and food web dynamics. In: de Ruiter PC, Wolters V, Moore JC (eds) Dynamics food webs, multiple species assemblage, ecosystem development and environmental change. Academic Press, New York, pp 167–178Google Scholar
  17. Fath BD, Scharler UM, Ulanowicz RE, Hannon B (2007) Ecological network analysis: network construction. Ecol Model 208(1):49–55. doi:10.1016/j.ecolmodel.2007.04.029 CrossRefGoogle Scholar
  18. French A (1968) Special relativity. W.W. Norton & Company, New YorkGoogle Scholar
  19. Klecka J, Boukal DS (2013) Foraging and vulnerability traits modify predator–prey body mass allometry: freshwater macroinvertebrates as a case study. J Anim Ecol 82(5):1031–1041. doi:10.1111/1365-2656.12078 PubMedCrossRefGoogle Scholar
  20. Kotrschal K, Brandstätter R, Gomahr A, Junger H, Palzenberger M, Zaunreiter M (1991) Brain and sensory systems. In: Winfield IJ, Nelson JS (eds) Cyprinid fishes: systematics, biology and exploitation. Chapman and Hall, London, pp 284–331CrossRefGoogle Scholar
  21. Layman CA, Langerhans RB, Winemiller KO (2005) Body size, not other morphological traits, characterizes cascading effects in fish assemblage composition following commercial netting. Can J Fish Aquat Sci 62(12):2802–2810. doi:10.1139/F05-183 CrossRefGoogle Scholar
  22. Link JS (2004) A general model of selectivity for fish feeding: a rank proportion algorithm (Transactions of the American Fisheries Society). Trans Am Fish Soc 133(3):655–673. doi:10.1577/t02-142.1 CrossRefGoogle Scholar
  23. MacArthur R, Levins R (1967) The limiting similarity, convergence, and divergence of coexisting species. Am Nat 101(921):377–385CrossRefGoogle Scholar
  24. May RM, MacArthur RH (1972) Niche overlap as a function of environmental variability. Proc Natl Acad Sci 69(5):1109–1113PubMedCrossRefPubMedCentralGoogle Scholar
  25. Nagelkerke LAJ, Sibbing FA (2000) The large barbs (Barbus spp., Cyprinidae, teleostei) of Lake Tana (Ethiopia), with a description of a new species, Barbus osseensis. Neth J Zool 50(2):179–214. doi:10.1163/156854200505946 CrossRefGoogle Scholar
  26. Nagelkerke LAJ, Sibbing FA, van den Boogaart JGM, Lammens EHRR, Osse JWM (1994) The barbs (Barbus spp.) of Lake Tana: a forgotten species flock? Environ Biol Fish 39(1):1–22. doi:10.1007/BF00004751 CrossRefGoogle Scholar
  27. Naisbit RE, Rohr RP, Rossberg AG, Kehrli P, Bersier L-F (2012) Phylogeny versus body size as determinants of food web structure. Proc R Soc B Biol Sci. doi:10.1098/rspb.2012.0327 Google Scholar
  28. Petchey OL, Beckerman AP, Riede JO, Warren PH (2008) Size, foraging, and food web structure. Proc Natl Acad Sci 105(11):4191–4196. doi:10.1073/pnas.0710672105 PubMedCrossRefPubMedCentralGoogle Scholar
  29. Piegorsch WW, Bailer AJ (2005) Analyzing environmental data. Wiley, ChichesterCrossRefGoogle Scholar
  30. Pouilly M, Lino F, Bretenoux JG, Rosales C (2003) Dietary–morphological relationships in a fish assemblage of the Bolivian Amazonian floodplain. J Fish Biol 62(5):1137–1158. doi:10.1046/j.1095-8649.2003.00108.x CrossRefGoogle Scholar
  31. Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  32. Reunanen J (2003) Overfitting in making comparisons between variable selection methods. J Mach Learn Res 3:1371–1382Google Scholar
  33. Rohr RP, Scherer H, Kehrli P, Mazza C, Bersier L-F (2010) Modeling food webs: exploring unexplained structure using latent traits. Am Nat 176(2):170–177. doi:10.1086/653667 PubMedCrossRefGoogle Scholar
  34. Rossberg AG (2013) Food webs and biodiversity: foundations, models, data, 1st edn. Wiley, Chichester. doi:10.1002/9781118502181 CrossRefGoogle Scholar
  35. Rossberg AG, Matsuda H, Amemiya T, Itoh K (2006) Food webs: experts consuming families of experts. J Theor Biol 241(3):552–563. doi:10.1016/j.jtbi.2005.12.021 PubMedCrossRefGoogle Scholar
  36. Rossberg AG, Ishii R, Amemiya T, Itoh K (2008) The top-down mechanism for body-mass—abundance scaling (Ecology). Ecology 89(2):567–580. doi:10.1890/07-0124.1 PubMedCrossRefGoogle Scholar
  37. Rossberg AG, Brännström Å, Dieckmann U (2010a) Food-web structure in low- and high-dimensional trophic niche spaces. J R Soc Interface. doi:10.1098/rsif.2010.0111 PubMedPubMedCentralGoogle Scholar
  38. Rossberg AG, Brännström Å, Dieckmann U (2010b) How trophic interaction strength depends on traits. Theor Ecol 3(1):13–24. doi:10.1007/s12080-009-0049-1 CrossRefGoogle Scholar
  39. Rossberg AG, Farnsworth KD, Satoh K, Pinnegar JK (2011) Universal power-law diet partitioning by marine fish and squid with surprising stability–diversity implications. Proc R Soc B Biol Sci 278(1712):1617–1625. doi:10.1098/rspb.2010.1483 CrossRefGoogle Scholar
  40. Russo T, Pulcini D, O'Leary Á, Cataudella S, Mariani S (2008) Relationship between body shape and trophic niche segregation in two closely related sympatric fishes. J Fish Biol 73(4):809–828. doi:10.1111/j.1095-8649.2008.01964.x CrossRefGoogle Scholar
  41. Schmitz OJ, Price JR (2011) Convergence of trophic interaction strengths in grassland food webs through metabolic scaling of herbivore biomass. J Anim Ecol 80(6):1330–1336. doi:10.1111/j.1365-2656.2011.01882.x PubMedCrossRefGoogle Scholar
  42. Sibbing FA (1991a) Food capture and oral processing. In: Winfield IJ, Nelson JS (eds) Cyprinid fishes: systematics, biology and exploitation, vol. 3. Fish and Fisheries Series. Chapman & Hall, London, pp 377–412CrossRefGoogle Scholar
  43. Sibbing FA (1991b) Food processing by mastication in cyprinid fish. In: Vincent JFV, Lillford PJ (eds) Feeding and the texture of food, vol. 44. SEB Seminar Series. Cambridge University Press, Cambridge, pp 57–92. doi:10.1017/CBO9780511600555.005 CrossRefGoogle Scholar
  44. Sibbing FA, Nagelkerke LAJ (2001) Resource partitioning by Lake Tana barbs predicted from fish morphometrics and prey characteristics. Rev Fish Biol Fish 10(4):393–437. doi:10.1023/A:1012270422092 CrossRefGoogle Scholar
  45. Sibbing FA, Nagelkerke LAJ, Osse JWM (1994) Ecomorphology as a tool in fisheries—identification and ecotyping of Lake Tana Barbs (Barbus-Intermedius Complex), Ethiopia. Neth J Agric Sci 42(1):77–85Google Scholar
  46. Sokolov DD (2002) Pseudo-Euclidean space. In: Hazewinkel M (ed) Encyclopaedia of mathematics. Kluwer, DordrechtGoogle Scholar
  47. Spooner D, Vaughn C (2008) A trait-based approach to species’ roles in stream ecosystems: climate change, community structure, and material cycling. Oecologia 158(2):307–317. doi:10.1007/s00442-008-1132-9 PubMedCrossRefGoogle Scholar
  48. Stouffer DB, Rezende EL, Amaral LAN (2011) The role of body mass in diet contiguity and food-web structure. J Anim Ecol 80(3):632–639. doi:10.1111/j.1365-2656.2011.01812.x PubMedCrossRefPubMedCentralGoogle Scholar
  49. Vucic-Pestic O, Rall BC, Kalinkat G, Brose U (2010) Allometric functional response model: body masses constrain interaction strengths. J Anim Ecol 79(1):249–256. doi:10.1111/j.1365-2656.2009.01622.x PubMedCrossRefGoogle Scholar
  50. Wainwright PC, Richard BA (1995) Predicting patterns of prey use from morphology of fishes. Environ Biol Fish 44:97–113. doi:10.1007/BF00005909 CrossRefGoogle Scholar
  51. Williams R, Purves D (2011) The probabilistic niche model reveals substantial variation in the niche structure of empirical food webs (Ecology). Ecology 92:1849–1857. doi:10.1890/11-0200.1
  52. Woodward G, Hildrew AG (2002) Body-size determinants of niche overlap and intraguild predation within a complex food web. J Anim Ecol 71(6):1063–1074. doi:10.1046/j.1365-2656.2002.00669.x CrossRefGoogle Scholar
  53. Yoshida K (2003) Dynamics of evolutionary patterns of clades in a food web system model. Ecol Res 18:625–637. doi:10.1111/j.1440-1703.2003.00585.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Leopold A. J. Nagelkerke
    • 1
  • Axel G. Rossberg
    • 2
    • 3
    • 4
  1. 1.Aquaculture and Fisheries Group, Wageningen Institute of Animal Sciences (WIAS)Wageningen UniversityWageningenThe Netherlands
  2. 2.Lowestoft LaboratoryCentre for Environment, Fisheries and Aquaculture Science (Cefas)LowestoftUK
  3. 3.School of Biological SciencesQueen’s University BelfastBelfastUK
  4. 4.School of Environmental SciencesUniversity of East AngliaNorwichUK

Personalised recommendations