Advertisement

Theoretical Ecology

, Volume 6, Issue 3, pp 295–308 | Cite as

Warning signs for wave speed transitions of noisy Fisher–KPP invasion fronts

  • Christian Kuehn
Original Paper

Abstract

Invasion waves are a fundamental building block of theoretical ecology. In this study, we aim to take the first steps to link propagation failure and fast acceleration of traveling waves to critical transitions (or tipping points). The approach is based upon a detailed numerical study on various versions of the Fisher–Kolmogorov–Petrovskii–Piscounov equation. The main motivation of this work is to contribute to the following question: how much information do statistics, collected by a stationary observer, contain about the speed and bifurcations of traveling waves? We suggest warning signs based upon closeness to carrying capacity, second-order moments, and transients of localized initial invasions. However, we also show that these warning signs can be difficult to interpret if limited information is available and that the generalization of classical variance-based warning signs is problematic in the context of propagation failure.

Keywords

Critical transitions Invasion waves Propagation failure Fisher–KPP FKPP SPDE 

Notes

Acknowledgments

I would like to thank the European Commission (EC/REA) for the support by a Marie-Curie International Reintegration grant. I also acknowledge the support via an APART fellowship of the Austrian Academy of Sciences (ÖAW). Furthermore, I would like to thank the two anonymous referees and the editor whose comments helped to improve the manuscript.

References

  1. Armero J, Casademunt J, Ramirez-Piscina L, Sancho JM (1998) Ballistic and diffusive corrections to front propagation in the presence of multiplicative noise. Phys Rev E 58(5):5494–5500CrossRefGoogle Scholar
  2. Armero J, Sancho JM, Casademunt J, Lacasta AM, Ramirez-Piscina L, Sagués F (1996) External fluctuations in front propagation. Phys Rev Lett 76(17):3045–3048PubMedCrossRefGoogle Scholar
  3. Arnold L (1974) Stochastic differential equations: theory and application. Wiley, New YorkGoogle Scholar
  4. Benguria RD, Depassier MC (1996) Speed of fronts of the reaction-diffusion equation. Phys Rev Lett 77(6):1171–1173PubMedCrossRefGoogle Scholar
  5. Bramson M, Durrett R, Swindle G (1989) Statistical mechanics of crabgrass. Ann Probab 17:444–481CrossRefGoogle Scholar
  6. Brindley J, Biktashev VH, Tsyganov MA (2005) Invasion waves in populations with excitable dynamics. Biol Invasions 7:807–816CrossRefGoogle Scholar
  7. Brunet E, Derrida B (1997) Shift in the velocity front due to a cutoff. Phys Rev E 56(3):2597–2604CrossRefGoogle Scholar
  8. Brunet E, Derrida B, Mueller AH, Munier S (2006) Phenomenological theory giving full statistics of the position of fluctuating fronts. Phys Rev E 73(056126)Google Scholar
  9. Carpenter SR, Cole JJ, Pace ML, Batt R, Brock WA, Cline T, Coloso J, Hodgson JR, Kitchell JF, Seekell DA, Smith L, Weidel B (2011) Early warning signs of regime shifts: a whole-ecosystem experiment. Science 332:1079–1082PubMedCrossRefGoogle Scholar
  10. Chow PL (2007) Stochastic partial differential equations. Chapman & Hall / CRC, Boca RatonGoogle Scholar
  11. Costa A, Blythe RA, Evans MR (2010) Discontinuous transition in a boundary driven contact process. J Stat Mech Theor Exp 9:P09008Google Scholar
  12. Cross MC, Hohenberg PC (1993) Pattern formation outside of equilibrium. Rev Mod Phys 65(3):851–1112CrossRefGoogle Scholar
  13. Dakos V, Kéfi M, Rietkerk M, van Nes EH, Scheffer M (2011) Slowing down in spatially patterned systems at the brink of collapse. Am Nat 177(6):153–166CrossRefGoogle Scholar
  14. Dakos V, van Nes EH, Donangelo R, Fort H, Scheffer M (2009) Spatial correlation as leading indicator of catastrophic shifts. Theor Ecol 3(3):163–174CrossRefGoogle Scholar
  15. Doering CR, Mueller C, Smereka P (2003) Interacting particles, the stochastic Fisher–Kolmogorov–Petrovsky–Piscounov equation, and duality. Physica A 325:243–259CrossRefGoogle Scholar
  16. Drake JM, Griffen BD (2010) Early warning signals of extinction in deteriorating environments. Nature 467:456–459PubMedCrossRefGoogle Scholar
  17. Durrett R (2010) Probability: theory and examples, 4th edn. CUP, New YorkCrossRefGoogle Scholar
  18. Ebert U, van Saarloos W (2000) Front propagation into unstable states: universal algebraic convergence towards uniformly translating pulled fronts. Physica D 146:1–99CrossRefGoogle Scholar
  19. Elworthy KD, Zhao HZ, Gaines JG (1994) The propagation of travelling waves for stochastic generalized KPP equations. Mathl Comput Modelling 20(4):131–166CrossRefGoogle Scholar
  20. Fagan WF, Lewis MA, Neubert MG, van den Driessche P (2002) Invasion theory and biological control. Ecol Lett 5:148–157CrossRefGoogle Scholar
  21. Filipe JAN, Otten W, Gibson GJ, Gilligan CA (2004) Inferring the dynamics of a spatial epidemic from time-series data. Bull Math Biol 66:379–391Google Scholar
  22. Fisher RA (1937) The wave of advance of advantageous genes. Ann Eugenics 7:353–369Google Scholar
  23. Flandoli F (1996) Stochastic flows for nonlinear second-order parabolic SPDE. Ann Prob 24(2):547–558CrossRefGoogle Scholar
  24. Gaines JG (1995) Numerical experiments with S(P)DEs. In: Etheridge A (ed) Stochastic partial differential equations, vol 216. LMS Lecture Note Series. CUP, Cambridge, pp 55–71CrossRefGoogle Scholar
  25. Garcia-Ojalvo J, Sancho J (1999) Noise in spatially extended systems. Springer, New YorkCrossRefGoogle Scholar
  26. Gardiner C (2009) Stochastic Methods, 4th edn. Springer, BerlinGoogle Scholar
  27. Golding I, Kozlovsky Y, Cohen I, Ben-Jacob E (1998). Physica A 260:510–554CrossRefGoogle Scholar
  28. Guckenheimer J, Kuehn C (2010) Homoclinic orbits of the FitzHugh-Nagumo equation: bifurcations in the full system. SIAM J Appl Dyn Syst 9:138–153CrossRefGoogle Scholar
  29. Gyöngy I (1998) Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise. I Potential Anal 9:1–25CrossRefGoogle Scholar
  30. Hairer M (2009) An introduction to stochastic partial differential equations. (Lecture Notes) http://www.hairer.org/notes/SPDEs.pdf
  31. Hamel F, Nadirashvili N (2001) Travelling fronts and entire solutions of the Fisher-KPP equation in \(\mathbb {R}^{N}\). Arch Ration Mech Anal 157:91–163CrossRefGoogle Scholar
  32. Hastings A, Cuddington K, Davies KF, Dugaw CJ, Elmendorf S, Freestone A, Harrison S, Holland M, Lambrinos J, Malvadkar U, Melbourne BA, Moore K (2005) The spatial spread of invasions: new developments in theory and evidence. Ecol Lett 8:91–101CrossRefGoogle Scholar
  33. Highham DJ (2001) An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Review 43(3):525–546CrossRefGoogle Scholar
  34. Hilker FM, Lewis MA, Seno H, Langlais M, Malchow H (2005) Pathogens can slow down or reverse invasion fronts of their hosts. Biol Invasions 7:817–832CrossRefGoogle Scholar
  35. Hirota M, Holmgren M, van Nes EH, Scheffer M (2011) Global resilience of tropical forest and savanna to critical transitions. Science 334:232–235PubMedCrossRefGoogle Scholar
  36. Holway DA (1998) Factors governing rate invasion: a natural experiment using Argentine ants. Oecologia 115:206–212CrossRefGoogle Scholar
  37. Hoyle R (2006) Pattern formation: an introduction to methods. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  38. Jentzen A, Kloeden PE (2009) The numerical approximation of stochastic partial differential equations. Milan J Math 77:205–244CrossRefGoogle Scholar
  39. Jentzen A, Röckner M (2012) arXiv:http://arxiv.org/abs/1001.2751v4, pp 1–37
  40. Jetschke G (1986) On the equivalence of different approaches to stochastic partial differential equations. Math Nachr 128:315–329CrossRefGoogle Scholar
  41. Johnson LE, Carlton JT (1996) Post-establishment spread in large-scale invasions: dispersal mechanisms of the zebra mussel Dreissena polymorpha. Ecology 77(6):1686–1690CrossRefGoogle Scholar
  42. Jordan PM, Puri A (2002) Qualitative results for solutions of the steady Fisher-KPP equation. Appl Math Lett 15:239–250CrossRefGoogle Scholar
  43. Kéfi S, Rietkerk M, Alados CL, Peyo Y, Papanastasis VP, ElAich A, de Ruiter PC (2007) Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems. Nature 449:213–217PubMedCrossRefGoogle Scholar
  44. Kloeden PE, Platen E (2010) Numerical solution of stochastic differential equations. Springer, New YorkGoogle Scholar
  45. Kolmogorov A, Petrovskii I, Piscounov N (1991) A study of the diffusion equation with increase in the amount of substance, and its application to a biological problem. In: Tikhomirov VM (ed) Selected works of A. N. Kolmogorov I. Kluwer, Boston, pp 248–270. Translated by V. M. Volosov from Bull. Moscow Univ., Math Mech 1, 1–25Google Scholar
  46. Kölzsch A, Blasius B (2011) Indications of marine bioinvasion from network theory. An analysis of the global cargo ship network. Euro Phys J B 84:601–612CrossRefGoogle Scholar
  47. Kuehn C (2011) A mathematical framework for critical transitions: bifurcations, fast-slow systems and stochastic dynamics. Physica D 240(12):1020–1035CrossRefGoogle Scholar
  48. Kuehn C (2012) A mathematical framework for critical transitions: normal forms, variance and applications. J Nonl Sci:1–56. acceptedGoogle Scholar
  49. Lewis M, Pacala S (2000) Modeling and analysis of stochastic invasion processes. J Math Biol 41:387–429PubMedCrossRefGoogle Scholar
  50. Lonsdale WM (1993) Rates of spread of an invading species: Mimosa pigra in Northern Australia. J Ecol 81:513–521CrossRefGoogle Scholar
  51. Malchow H, Hilker FM, Petrovskii SV, Brauer K (2004) Oscillations and waves in a virally infected plankton system. Part I The lysogenic stage. Ecol Complexity 1(3):211–233CrossRefGoogle Scholar
  52. Metz JAJ, Mollison D, van den Bosch F (2000) The dynamics of invasion waves. In: Dieckmann U, Law R, Metz JAJ (eds) The geometry of ecological interactions: simplifying spatial complexity. CUP, Cambridge, pp 482–512CrossRefGoogle Scholar
  53. Mimura M, Sakaguchi H, Matsushita M (2000) Reaction-diffusion modelling of bacterial colony patterns. Physica A 282:283–303CrossRefGoogle Scholar
  54. Mueller C, Sowers RB (1995) Random travelling waves for the KPP equation with noise. J Funct Anal 128(2):439–498CrossRefGoogle Scholar
  55. Mueller C, Tribe R (1994) A phase transition for a stochastic PDE related to the contact process. Probab Theory Relat Fields 100:131–156CrossRefGoogle Scholar
  56. Mueller C, Tribe R (1995) Stochastic PDEs arising from the long range contact and long range voter processes. Probab Theory Relat Fields 102:519–545CrossRefGoogle Scholar
  57. Mueller C, Tribe R (2011) A phase diagram for a stochastic reaction diffusion system. Probab Theory Relat Fields 149:561–637CrossRefGoogle Scholar
  58. Murray JD (2002) Mathematical biology I: an introduction, 3rd edn. Springer, New YorkGoogle Scholar
  59. Nagumo J, Arimoto S, Yoshizawa S (1962) An active pulse transmission line simulating nerve axon. Proc IRE 50:2061–2070CrossRefGoogle Scholar
  60. Owen MR, Lewis MA (2001) How predation can slow stop or reverse a prey invasion. Bull Math Biol 63:655–684PubMedCrossRefGoogle Scholar
  61. Pechenik L, Levine H (1999) Interfacial velocity corrections due to multiplicative noise. Phys Rev E 59(4):3893–3900CrossRefGoogle Scholar
  62. Phillips BL, Brown GP, Webb JK, Shine R (2006) Invasion and the evolution of speed in toads. Nature 439:803PubMedCrossRefGoogle Scholar
  63. Popovic N (2011) A geometric classification of traveling front propagation in the Nagumo equation with cut-off. In: MURPHYS 2010: Proceedings of the international workshop on multi-rate processes and hysteresis, Pecs, 2010. vol 268 of J. Phys. Conference Series, p 012023Google Scholar
  64. Popovic N (2012) A geometric analysis of front propagation in an integrable Nagumo equation with a linear cut-off. Physica D 241:1976–1984CrossRefGoogle Scholar
  65. Da Prato G, Zabczyk J (1992) Stochastic equations in infinite dimensions. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  66. Rocco A, Casademunt J, Ebert U, van Saarloos W (2001) Diffusion coefficient of propagating fronts with multiplicative noise. Phys Rev E 65:012102CrossRefGoogle Scholar
  67. Rocco A, Ramirez-Piscina L, Casademunt J (2002) Kinematic reduction of reaction-diffusion fronts with multiplicative noise: derivation of stochastic sharp-interface equations. Phys Rev E 65:056116CrossRefGoogle Scholar
  68. Roques L, Hamel F (2007) Mathematical analysis of the optimal habitat configurations for species persistence. Math Biosci 210:34–59PubMedCrossRefGoogle Scholar
  69. Roques L, Hamel F, Fayard J, Fady B, Klein EK (2010) Recolonisation by diffusion can generate increasing rates of spread. J Theor Biol 77:205–212CrossRefGoogle Scholar
  70. Scheffer M, Bascompte J, Brock WA, Brovkhin V, Carpenter SR, Dakos V, Held H, van Nes EH, Rietkerk M, Sugihara G (2009) Early-warning signals for critical transitions. Nature 461:53–59PubMedCrossRefGoogle Scholar
  71. Scheffer M, Carpenter S, Foley JA, Folke C, Walker B (2001) Catastrophic shifts in ecosystems. Nature 413:591–596PubMedCrossRefGoogle Scholar
  72. Scheffer M, Carpenter SR (2003) Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol Evol 18(12):648–656CrossRefGoogle Scholar
  73. Scheffer M, van Nes EH (2007) Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia 584:455–466CrossRefGoogle Scholar
  74. Shiga T, Uchiyama K (1986) Stationary states and the stability of the stepping stone model involving mutation and selection. Probab Theory Relat Fields 73: 87–117CrossRefGoogle Scholar
  75. Simberloff D, Gibbons L (2004) Now you see them, now you don’t! population crashes of established introduced species. Biol Invasions 6:161–172CrossRefGoogle Scholar
  76. Skellam JG (1951) Random dispersal in theoretical populations. Biometrika 38(1):196–218PubMedCrossRefGoogle Scholar
  77. Spagnolo B, Fiasconaro A, Valenti D (2003) Noise induced phenomena in Lotka-Volterra systems. Fluct Noise Lett 3(2):177–185CrossRefGoogle Scholar
  78. Thomas CD, Bodsworth EJ, Wilson RJ, Simmons AD, Davies ZG, Musche M, Conradt L (2001) Ecological and evolutionary processes at expanding range margins. Nature 411:577–581PubMedCrossRefGoogle Scholar
  79. Tribe R (1996) A travelling wave solution to the Kolmogorov equation with noise. Stochastics 56(3):317–340Google Scholar
  80. van Saarloos W (2003) Front propagation into unstable states. Phys Rep 386:29–222CrossRefGoogle Scholar
  81. Veraart AJ, Faassen EJ, Dakos V, van Nes EH, Lurling M, Scheffer M (2012) Recovery rates reflect distance to a tipping point in a living system. Nature 481:357–359Google Scholar
  82. Vilar JMG, Solé RV (1998) Effects of noise in symmetric two-species competition. Phys Rev Lett 80(18):4099–4102CrossRefGoogle Scholar
  83. Walsh JB (1986) An introduction to stochastic partial differential equations. In: École d’été de probabilités de Saint-Flour, XIV - 1984, vol 1180 of Lecture Notes in Math. Springer, New York, pp 265–439Google Scholar
  84. Xin J (2009) An introduction to fronts in random media. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Institute for Analysis and Scientific ComputingVienna University of TechnologyViennaAustria

Personalised recommendations