Advertisement

Theoretical Ecology

, Volume 6, Issue 3, pp 359–372 | Cite as

Regime shifts in a social-ecological system

  • Steven J. Lade
  • Alessandro Tavoni
  • Simon A. Levin
  • Maja Schlüter
Original Paper

Abstract

Ecological regime shifts are rarely purely ecological. Not only is the regime shift frequently triggered by human activity, but the responses of relevant actors to ecological dynamics are often crucial to the development and even existence of the regime shift. Here, we show that the dynamics of human behaviour in response to ecological changes can be crucial in determining the overall dynamics of the system. We find a social–ecological regime shift in a model of harvesters of a common-pool resource who avoid over-exploitation of the resource by social ostracism of non-complying harvesters. The regime shift, which can be triggered by several different drivers individually or also in combination, consists of a breakdown of the social norm, sudden collapse of co-operation and an over-exploitation of the resource. We use the approach of generalized modeling to study the robustness of the regime shift to uncertainty over the specific forms of model components such as the ostracism norm and the resource dynamics. Importantly, the regime shift in our model does not occur if the dynamics of harvester behaviour are not included in the model. Finally, we sketch some possible early warning signals for the social–ecological regime shifts we observe in the models.

Keywords

Regime shifts Tipping points Early warning signals Bifurcation Generalized modelling social–ecological system 

Notes

Acknowledgments

The authors would like to thank Oonsie Biggs, Ralf Eichhorn, Carl Folke, Thilo Gross, Jamila Haider, Juan Carlos Rocha and Nanda Wijermans for helpful comments on the manuscript. The research leading to these results has received funding from the European Research Council under the European Unions Seventh Framework Programme (FP/2007-2013)/ERC grant agreement no. 283950 SES-LINK and a core grant to the Stockholm Resilience Centre by Mistra.. AT is supported by the Centre for Climate Change Economics and Policy, which is funded by the UK Economic and Social Research Council and Munich Re. SAL was supported by National Science Foundation grants EF-1137894 and GEO-1211972.

Supplementary material

12080_2013_187_MOESM1_ESM.pdf (56 kb)
ESM (PDF 57 KB)

References

  1. Acheson J, Gardner R (2011) The evolution of the Maine lobster V-notch practice: cooperation in a prisoner’s dilemma game. Ecol Soc 16:41Google Scholar
  2. Aufderheide H, Rudolf L, Gross T (2012) Mesoscale symmetries explain dynamical equivalence of food webs. New J Phys 14(10):105014CrossRefGoogle Scholar
  3. Berkes F, Folke C (1998) Linking social and ecological systems Management practices and social mechanisms for building resilience. Cambridge University Press, CambridgeGoogle Scholar
  4. Bestelmeyer BT, Ellison AM, Fraser WR, Gorman KB, Holbrook SJ, Laney CM, Ohman MD, Peters DPC, Pillsbury FC, Rassweiler A, Schmitt RJ, Sharma S (2011) Analysis of abrupt transitions in ecological systems. Ecosphere 2:129Google Scholar
  5. Biggs R, Carpenter SR, Brock WA (2009) Turning back from the brink: detecting an impending regime shift in time to avert it. Proc Natl Acad Sci USA 106(3):826–831PubMedCentralPubMedCrossRefGoogle Scholar
  6. Biggs R, Blenckner T, Folke C, Gordon L, Norström A, Nyström M, Peterson G (2012a) Regime shifts. In: Hastings A, Gross LJ (eds) Encyclopedia of theoretical ecology. University of California Press, Berkeley, pp 609–617Google Scholar
  7. Biggs R, Schlüter M, Biggs D, Bohensky EL, BurnSilver S, Cundill G, Dakos V, Daw TM, Evans LS, Kotschy K, Leitch AM, Meek C, Quinlan A, Raudsepp-Hearne C, Robards MD, Schoon ML, Schultz L, West PC (2012b) Toward principles for enhancing the resilience of ecosystem services. Annu Rev Environ Resour 37:421–448CrossRefGoogle Scholar
  8. Boettiger C, Hastings A (2012) Quantifying limits to detection of early warning for critical transitions. J R Soc Interface 9:2527–2539PubMedCentralPubMedCrossRefGoogle Scholar
  9. Boettiger C, Hastings A (2013) From patterns to predictions. Nature 493:157–158PubMedGoogle Scholar
  10. Bowles S, Gintis H (2002) Social capital and community governance. Econ J 112(483):F419–F436CrossRefGoogle Scholar
  11. Carpenter SR, Mooney HA, Agard J, Capistrano D, DeFries RS, Daz S, Dietz T, Duraiappah AK, Oteng-Yeboah A, Pereira HM, Perrings C, Reid WV, Sarukhan J, Scholes RJ, Whyte A (2009). Proc Natl Acad Sci 106(5):1305–1312PubMedCentralPubMedCrossRefGoogle Scholar
  12. Chambers RG (1988) Applied production analysis: a dual approach. Cambridge University Press, CambridgeGoogle Scholar
  13. Cialdini RB, Goldstein NJ (2004) Social influence: compliance and conformity. Annu Rev Psychol 55:591–621PubMedCrossRefGoogle Scholar
  14. Contamin R, Ellison AM (2009) Indicators of regime shifts in ecological systems: what do we need to know and when do we need to know it. Ecol Appl 19:799–816PubMedCrossRefGoogle Scholar
  15. Crépin AS, Lindahl T (2009) Grazing games: sharing common property resources with complex dynamics. Environ Resour Econ 44:29–46CrossRefGoogle Scholar
  16. Crépin AS, Biggs R, Polasky S, Troell M, de Zeeuw A (2012) Regime shifts and management. Ecol Econ 84:15–22CrossRefGoogle Scholar
  17. Dakos V, Carpenter S, Cline T, Lahti L (2012a) Early warning signals toolbox. Version 1.0.2, http://earlywarnings.r-forge.r-project.org
  18. Dakos V, Carpenter SR, Brock WA, Ellison AM, Guttal V, Ives AR, Kfi S, Livina V, Seekell DA, van Nes EH, Scheffer M (2012b) Methods for detecting early warnings of critical transitions in time series illustrated using simulated ecological data. PLoS ONE 7(7):e41010CrossRefGoogle Scholar
  19. Dakos V, van Nes EH, D’Oderico P, Scheffer M (2012c) Robustness of variance and autocorrelation as indicators of critical slowing down. Ecol 93:264–271CrossRefGoogle Scholar
  20. Ditlevsen PD, Johnsen SJ (2010) Tipping points: early warning and wishful thinking. Geophysical Research Letters 37(19):L19703CrossRefGoogle Scholar
  21. Ermentrout B (2011) XPPAUT. Version 6.11, http://www.math.pitt.edu/~bard/xpp/xpp.html
  22. Fehr E, Fischbacher U (2002) Why social preferences matter—the impact of non-selfish motives on competition, cooperation, and incentives. Econ J 112(478):C1–C33CrossRefGoogle Scholar
  23. Folke C, Carpenter SR, Walker B, Scheffer M, Chapin T, Rockström J (2010) Resilience thinking: integrating resilience, adaptability and transformability. Ecol Soc 15:20Google Scholar
  24. Gehrmann E, Drossel B (2010) Boolean versus continuous dynamics on simple two-gene modules. Phys Rev E 82:046120CrossRefGoogle Scholar
  25. Gross T, Feudel U (2004) Analytical search for bifurcation surfaces in parameter space. Physica D 195(34):292–302CrossRefGoogle Scholar
  26. Gross T, Feudel U (2006) Generalized models as a universal approach to the analysis of nonlinear dynamical systems. Phys Rev E 73(1):016205CrossRefGoogle Scholar
  27. Gross T, Rudolf L, Levin SA, Dieckmann U (2009) Generalized models reveal stabilizing factors in food webs. Science 325:747–750PubMedCrossRefGoogle Scholar
  28. Guckenheimer J (1978) The catastrophe controversy. Math Intell 1:15–20CrossRefGoogle Scholar
  29. Hastings A, Wysham DB (2010) Regime shifts in ecological systems can occur with no warning. Ecol Lett 13:464–472PubMedCrossRefGoogle Scholar
  30. Horan RD, Fenichel EP, Drury KLS, Lodge DM (2011) Managing ecological thresholds in coupled environmental-human systems. Proc Natl Acad Sci USA 108:7333–7338PubMedCentralPubMedCrossRefGoogle Scholar
  31. Iwasa Y, Uchida T, Yokomizo H (2007) Nonlinear behavior of the socio-economic dynamics for lake eutrophication control. Ecol Econ 63(1):219–229CrossRefGoogle Scholar
  32. Kelley WG, Peterson AC (2010) The theory of differential equations: classical and qualitative, 2nd edn. Springer, New YorkCrossRefGoogle Scholar
  33. Kline RB (2011) Principles and Practice of structural equation modeling, 3rd edn. Guilford Press, New YorkGoogle Scholar
  34. Kuehn C (2011) A mathematical framework for critical transitions: bifurcations, fast-slow systems and stochastic dynamics. Physica D 240:1020–1035CrossRefGoogle Scholar
  35. Kuehn C (2013) A mathematical framework for critical transitions: normal forms, variance and applications. J Nonlinear Sci doi: 10.1007/s00332-012-9158-x Google Scholar
  36. Kuehn C, Siegmund S, Gross T (2013) Dynamical analysis of evolution equations in generalized models. IMA J App Math. doi: 10.1093/imamat/hxs008 Google Scholar
  37. Kuznetsov Y (2010) Elements of applied bifurcation theory. Springer, New YorkGoogle Scholar
  38. Lade SJ, Gross T (2012) Early warning signals for critical transitions: a generalized modeling approach. PLoS Comput Biol 8(2):e1002360PubMedCentralPubMedCrossRefGoogle Scholar
  39. Lenton TM (2012) What early warning systems are there for environmental shocks?. In pressGoogle Scholar
  40. Levin S, Xepapadeas T, Crépin AS, Norberg J, de Zeeuw A, Folke C, Hughes T, Arrow K, Barrett S, Daily G, Ehrlich P, Kautsky N, Mäler KG, Polasky S, Troell M, Vincent JR, Walker B (2012) Social-ecological systems as complex adaptive systems: modeling and policy implications. Environ Dev Econ FirstView:1–22Google Scholar
  41. Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: synthesis. Island Press, Washington DCGoogle Scholar
  42. Osés-Eraso N, Viladrich-Grau M (2007) On the sustainability of common property resources. J Environ Econ Manag 53(3):393–410CrossRefGoogle Scholar
  43. Ostrom E (1990) Governing the commons: the evolution of institutions for collective action. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  44. Ostrom E (2006) The value-added of laboratory experiments for the study of institutions and common-pool resources. J Econ Behav Organ 61(2):149–163CrossRefGoogle Scholar
  45. Perretti CT, Munch SB (2012) Regime shift indicators fail under noise levels commonly observed in ecological systems. Ecol Appl 22:1771–1779CrossRefGoogle Scholar
  46. Polasky S, de Zeeuw A, Wagener F (2011) Optimal management with potential regime shifts. J Environ Econ Manag 62(2):229–240CrossRefGoogle Scholar
  47. Raffensperger C, Tickner J (1999) Protecting public health and the environment Implementing the precautionary principle. Island Press, Washington DCGoogle Scholar
  48. Scheffer M, Carpenter S, Foley JA, Folke C, Walker B (2001) Catastrophic shifts in ecosystems. Nature 413:591–596PubMedCrossRefGoogle Scholar
  49. Scheffer M, Bascompte J, Brock WA, Brovkin V, Carpenter SR, Dakos V, Held H, van Nes EH, Rietkerk M, Sugihara G (2009) Early-warning signals for critical transitions. Nature 461:53–59PubMedCrossRefGoogle Scholar
  50. Scheffer M, Carpenter SR, Lenton TM, Bascompte J, Brock W, Dakos V, van de Koppel J, van de Leemput IA, Levin SA, van Nes EH, Pascual M, Vandermeer J (2012) Anticipating critical transitions. Science 338:344–348PubMedCrossRefGoogle Scholar
  51. Schlüter M, McAllister RRJ, Arlinghaus R, Bunnefeld N, Eisenack K, Hölker F, Milner-Gulland E, Müller B, Nicholson E, Quaas M, Stöven M (2012a) New horizons for managing the environment: a review of coupled social-ecological systems modeling. Nat Resour Model 25:219–272CrossRefGoogle Scholar
  52. Schlüter M, Müller B, Frank K (2012b) MORE—modeling for resilience thinking and ecosystem stewardship. Available at SSRN: http://ssrn.com/abstract=2037723 or http://dx.doi.org/10.2139/ssrn.2037723
  53. Steneck RS, Hughes TP, Cinner JE, Adger WN, Arnold SN, Berkes F, Boudreau SA, Brown K, Folke C, Gunderson L, Olsson P, Scheffer M, Stephenson E, Walker B, Wilson J, Worm B (2011) Creation of a gilded trap by the high economic value of the maine lobster fishery, vol 25Google Scholar
  54. Sterman JD (2000) Business Dynamics: Systems Thinking and Modeling for a Complex World. McGraw-HillGoogle Scholar
  55. Steuer R, Gross T, Selbig J, Blasius B (2006) Structural kinetic modeling of metabolic networks. Proc Natl Acad Sci 103(32):11868–11873PubMedCentralPubMedCrossRefGoogle Scholar
  56. Tarui N, Mason CF, Polasky S, Ellis G (2008) Cooperation in the commons with unobservable actions. J Environ Econ Manag 55(1):37–51CrossRefGoogle Scholar
  57. Tavoni A, Schlüter M, Levin S (2012) The survival of the conformist: social pressure and renewable resource management. Journal of Theoretical Biology 299:152–161PubMedCrossRefGoogle Scholar
  58. Traulsen A, Claussen JC, Hauert C (2005) Coevolutionary dynamics: from finite to infinite populations. Physical Review Letters 238701:95Google Scholar
  59. Zeeman EC (1977) Catastrophe theory: selected papers, 1972–1977. Addison-WesleyGoogle Scholar
  60. Zumsande M (2011) Extension of generalized modeling and application to problems from cell biology. PhD thesis, Technische Universität DresdenGoogle Scholar
  61. Zumsande M, Gross T (2010) Bifurcations and chaos in the MAPK signaling cascade. J Theor Biol 265(3):481–491PubMedCrossRefGoogle Scholar
  62. Zumsande M, Stiefs D, Siegmund S, Gross T (2011) General analysis of mathematical models for bone remodeling. Bone 48(4):910–917PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Steven J. Lade
    • 1
    • 2
  • Alessandro Tavoni
    • 3
  • Simon A. Levin
    • 4
  • Maja Schlüter
    • 1
  1. 1.Stockholm Resilience CentreStockholm UniversityStockholmSweden
  2. 2.NORDITAKTH Royal Institute of Technology and Stockholm UniversityStockholmSweden
  3. 3.Grantham Research InstituteLondon School of EconomicsLondonUK
  4. 4.Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonUSA

Personalised recommendations