Theoretical Ecology

, Volume 6, Issue 4, pp 457–473 | Cite as

Multi-species SIR models from a dynamical Bayesian perspective

  • Lili Zhuang
  • Noel Cressie
  • Laura Pomeroy
  • Daniel Janies
Original Paper

Abstract

Multi-species compartment epidemic models, such as the multi-species susceptible–infectious–recovered (SIR) model, are extensions of the classic SIR models, which are used to explore the transient dynamics of pathogens that infect multiple hosts in a large population. In this article, we propose a dynamical Bayesian hierarchical SIR (HSIR) model, to capture the stochastic or random nature of an epidemic process in a multi-species SIR (with recovered becoming susceptible again) dynamical setting, under hidden mass balance constraints. We call this a Bayesian hierarchical multi-species SIR (MSIRB) model. Different from a classic multi-species SIR model (which we call MSIRC), our approach imposes mass balance on the underlying true counts rather than, improperly, on the noisy observations. Moreover, the MSIRB model can capture the discrete nature of, as well as uncertainties in, the epidemic process.

Keywords

Mass balance Epidemic model Influenza HSIR MSIR Disease dynamics 

References

  1. Alexander DJ (2000) A review of avian influenza in different bird species. Vet Microbiol 74:3–13PubMedCrossRefGoogle Scholar
  2. Allen L (2003) An introduction to stochastic processes with applications to biology. Prentice-Hall, Upper Saddle RiverGoogle Scholar
  3. Alonso D, McKane AJ, Pascual M (2007) Stochastic amplification in epidemics. J R Soc Interface 4(14):575–582PubMedCrossRefGoogle Scholar
  4. Anderson R, May R (1991) Infectious diseases of humans: dynamics and control. Oxford University Press, OxfordGoogle Scholar
  5. Arino J (2009) Diseases in metapopulations. In: Ma Z, Zhou Y, Wu J (eds) Series in contemporary applied mathematics, vol 11. World Scientific, Singapore, pp 65–123Google Scholar
  6. Arino J, Davis J, Hartley D, Jordan R, Miller J, Van Den Driessche P (2005) A multi-species epidemic model with spatial dynamics. Math Med Biol 22:129–142PubMedCrossRefGoogle Scholar
  7. Arulampalam S, Maskell S, Gordon N, Clapp T (2001) A tutorial on particle filters for on-line non-linear/non-Gaussian Bayesian tracking. IEEE Trans Signal Process 50:174–188CrossRefGoogle Scholar
  8. Besag J, York J, Mollié A (1991) Bayesian image restoration, with two applications in spatial statistics. Ann Inst Stat Math 43:1–59CrossRefGoogle Scholar
  9. Black AJ, McKane AJ (2010) Stochasticity in staged models of epidemics: quantifying the dynamics of whooping cough. J R Soc Interface 7:1219–1227PubMedCrossRefGoogle Scholar
  10. Bouma A, Claassen I, Natih K, Klinkenberg D, Donnelly C, Koch G, van Boven M (2009) Estimation of transmission parameters of H5N1 avian influenza virus in chickens. PLOS Pathogens 5(1):e1000, 281CrossRefGoogle Scholar
  11. Carlin B, Banerjee S (2002) Hierarchical multivariate CAR models for spatio-temporally correlated survival data (with discussion). In: Bernardo J, Bayarri M, Berger J, Dawid A, Heckerman D, Smith AFM, West M (eds) Bayesian statistics, vol 7. Clarendon Press, Oxford, pp 45–63Google Scholar
  12. Cressie N, Wikle C (2011) Statistics for spatio-temporal data. Wiley, HobokenGoogle Scholar
  13. Dobson A (2004) Population dynamics of pathogens with multiple host species. Am Nat 164:S64–S78PubMedCrossRefGoogle Scholar
  14. Dukić V, V, Lopes HF, Polson NG (2009) Tracking epidemics with Google flu trends data and a state-space SEIR model. J Am Stat Assoc 107:1410–1426Google Scholar
  15. Ellner SP, Bailey BA, Bobashev GV, Gallant AR, Grenfell BT, Nychka DW (1998) Noise and nonlinearity in measles epidemics: combining mechanistic and statistical approaches to population modeling. Am Nat 151(5):425–440PubMedCrossRefGoogle Scholar
  16. He D, Ionides EL, King AA (2010) Plug-and-play inference for disease dynamics: measles in large and small populations as a case study. J R Soc Interface 7:271–283PubMedCrossRefGoogle Scholar
  17. Hethcote HW (2000) The mathematics of infectious diseases. SIAM Review 42:599–653CrossRefGoogle Scholar
  18. Hooten MB, Wikle CK (2010) Statistical agent-based models for discrete spatio-temporal systems. J Am Stat Assoc 105:236–248CrossRefGoogle Scholar
  19. Ionides EL, Bretó C, King AA (2006) Inference for nonlinear dynamical systems. Proc Natl Acad Sci U.S.A. 103:18, 438–18, 443Google Scholar
  20. Jenkinson G, Goutsias J (2012) Numerical integration of the master equation in some models of stochastic epidemiology. PLoS ONE 7:e36, 160Google Scholar
  21. Kendall BE, Briggs CJ, Murdoch WW, Turchin P, Ellner SP, McCauley E, Nisbet RM, Wood SN (1999) Why do populations cycle? A synthesis of statistical and mechanistic modeling approaches. Ecology 80:1789–1805CrossRefGoogle Scholar
  22. Kendall BE, Ellner SP, McCauley E, Wood SN, Briggs CJ, Murdoch WM, Turchin P (2005) Population cycles in the pine looper moth: dynamical tests of mechanistic hypotheses. Ecol Monogr 75:259–276CrossRefGoogle Scholar
  23. Kermack W, McKendrick A (1927) Contributions to the mathematical theory of epidemics. Proc R Soc Edinb A 115:700–721CrossRefGoogle Scholar
  24. King AA, Ionides EL, Pascual M, Bouma MJ (2008) Inapparent infections and cholera dynamics. Nature 454:877–880PubMedCrossRefGoogle Scholar
  25. Kuiken T, Holmes E, McCauley J, Rimmelzwaan G, Williams C, Grenfell B (2006) Host species barriers to influenza virus infections. Science 312:394–397PubMedCrossRefGoogle Scholar
  26. Liu J, West M (2001) Combined parameter and state estimation in simulation-based filtering. In: Doucet A, de Freitas N, Gordon NJ (eds) Sequential Monte Carlo methods in practice. Springer, New York, pp 197–224CrossRefGoogle Scholar
  27. Mugglin A, Cressie N, Gemmell I (2002) Hierarchical statistical modelling of influenza epidemic dynamics in space and time. Stat Med 21:2703–2721PubMedCrossRefGoogle Scholar
  28. Munster V, Baas C, Lexmond P, Waldenström J, Wallensten A, Fransson T, Rimmelzwaan GF, Beyer WEP, Schutten M, Olsen B, Osterhaus ADME, Fouchier RAM (2007) Spatial, temporal, and species variation in prevalence of influenza A viruses in wild migratory birds. PLoS Pathog 3:e61PubMedCrossRefGoogle Scholar
  29. Nelson MI, Holmes EC (2007) The evolution of epidemic influenza. Nat Rev Genet 8:196–205PubMedCrossRefGoogle Scholar
  30. Nelson MI, Vincent AL, Kitikoon P, Holmes EC, Gramer MR (2012) Evolution of novel reassortant A/H3N2 influenza viruses in North American swine and humans, 2009–2011. J Virol 86(16):8872–8878PubMedCrossRefGoogle Scholar
  31. Reed C, Angulo FJ, Swerdlow DL, Lipsitch M, Meltzer MI, Jernigan D, Finelli L (2009) Estimates of the prevalence of pandemic H1N1 2009, United States, April–July 2009. Emerg Infect Dis 15:2004–2007PubMedCrossRefGoogle Scholar
  32. Reluga T (2004) A two-phase epidemic driven by diffusion. J Theor Biol 229:249–261PubMedCrossRefGoogle Scholar
  33. Saenz RA, Hethcote HW, Gray GC (2006) Confined animal feeding operations as amplifiers of influenza. Vector Borne Zoonotic Dis 6:338–346PubMedCrossRefGoogle Scholar
  34. Scholtissek C (1990) Pigs as the ‘mixing vessels’ for the creation of new pandemic influenza A viruses. Med Princ Pract 2:65–71Google Scholar
  35. Stallknecht DE, Brown JD (2007) Wild birds and the epidemiology of avian influenza. J Wildl Dis 43:S15–S20Google Scholar
  36. Vincent A, Ma W, Lager K, Janke B, Richt J (2008) Swine influenza viruses: a North American perspective. Adv Virus Res 72:127–154PubMedCrossRefGoogle Scholar
  37. Waller L, Carlin B, Xia H, Gelfand A (1997) Hierarchical spatio-temporal mapping of disease rates. J Am Stat Assoc 92:607–617CrossRefGoogle Scholar
  38. Webby RJ, Webster RG, Richt JA (2007) Influenza viruses in animal wildlife populations. Curr Top Microbiol Immunol 315:67–83PubMedCrossRefGoogle Scholar
  39. Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y (1992) Evolution and ecology of influenza A viruses. Microbiol Mol Biol Rev 56:152–179Google Scholar
  40. Wood SN (2010) Statistical inference for noisy nonlinear ecological dynamic systems. Nature 466:1102–1104PubMedCrossRefGoogle Scholar
  41. Xu Y, Allena L, Perelson A (2007) Stochastic model of an influenza epidemic with drug resistance. J Theor Biol 248:179–193PubMedCrossRefGoogle Scholar
  42. Zhuang L (2011) Bayesian dynamical modeling of count data. PhD thesis, Department of Statistics, The Ohio State University. http://rave.ohiolink.edu/etdc/view?acc_num=osu1315949027

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Lili Zhuang
    • 1
  • Noel Cressie
    • 2
  • Laura Pomeroy
    • 3
  • Daniel Janies
    • 4
  1. 1.Department of StatisticsThe Ohio State UniversityColumbusUSA
  2. 2.NIASRA, School of Mathematics and Applied StatisticsUniversity of WollongongWollongongAustralia
  3. 3.College of Veterinary MedicineThe Ohio State UniversityColumbusUSA
  4. 4.Department of Bioinformatics and GenomicsUniversity of North Carolina at CharlotteCharlotteUSA

Personalised recommendations