Theoretical Ecology

, Volume 6, Issue 4, pp 419–426 | Cite as

Range structure analysis: unveiling the internal structure of species’ ranges

Original Paper

Abstract

Assessing risks of local extinction and shifts in species ranges are fundamental tasks in ecology and conservation. Most studies have focused either on the border of species’ range or on complex spatiotemporal dynamics of populations within the spatial distribution of species. The internal properties of species ranges, however, have received less attention due to a general lack of simple tools. We propose a novel approach within a metapopulation framework to study species ranges based on simple mathematical rules. We formulate and test a model of population fluctuations through space to identify key factors that regulate population density. We propose that spatial variability in species abundance reflects the interaction between temporal variability in population dynamics and the spatial variability of population parameters. This approach, that we call range structure analysis, integrates temporal and spatial properties to diagnose how each parameter contributes to species occupancy throughout its geographic range.

Keywords

Range dynamics Population biology Species distribution Species’ border Metapopulation 

Notes

Acknowledgments

We thank Bruce T. Milne and Drew Allen for enlightening discussions. HS acknowledges the support of the US Department of Energy through the LANL/LDRD Program.

Supplementary material

12080_2013_177_MOESM1_ESM.doc (123 kb)
(DOC 123 kb)

References

  1. Arim M, Abades S, Neill P, Lima M, Marquet P (2006) Spread dynamics of invasive species. Proc Natl Acad Sci USA 103:374–378. doi:10.1073/pnas.0504272102 PubMedCrossRefGoogle Scholar
  2. Bahn V, McGill BJ (2007) Can niche-based distribution models outperform spatial interpolation? Global Ecol Biogeogr 6:733–742. doi:10.1111/j.1466-8238.2007.00331.x CrossRefGoogle Scholar
  3. Balda RP, Bateman GC (1971) Flocking and annual cycle of the pion jay, Gymnorhinus cyanocephalus. Condor 73:287–302CrossRefGoogle Scholar
  4. Balda R, Kamil A, Bednekoff P (1997) Predicting cognitive capacities from natural histories: examples from four corvid species. Curr Ornithol 13:33–66Google Scholar
  5. Bjørnstad ON, Stenseth NC, Saitoh T, Lindgjærde OC (1998) Mapping the regional transition to cyclicity in Clethrionomys rufocanus: spectral densities and functional data analysis. Res Popul Ecol 40:77–84CrossRefGoogle Scholar
  6. Brooks C (2006) Quantifying population substructure: extending the graph-theoretic approach. Ecology 87:864–872PubMedCrossRefGoogle Scholar
  7. Brown JH, Kodric-Brown A (1977) Turnover rates in insular biogeography—effect of immigration on extinction. Ecology 58:445–449CrossRefGoogle Scholar
  8. Brown JH, Mehlman DW, Stevens GC (1995) Spatial variation in abundance. Ecology 76:2028–243CrossRefGoogle Scholar
  9. Brown JH, Stevens GC, Kaufman DM (1996) The geographic range: size, shape, boundaries, and internal structure. Annu Rev Ecol Syst 27:597–623CrossRefGoogle Scholar
  10. Cabral JS, Schurr FM (2010) Estimating demographic models for the range dynamics of plant species. Global Ecol Biogeogr 19:85–97. doi:10.1111/j.1466-8238.2009.00492.x CrossRefGoogle Scholar
  11. Carter RN, Prince SD (1981) Epidemic models used to explain biogeographical distribution limits. Nature 293:644–645CrossRefGoogle Scholar
  12. Case TJ, Taper ML (2000) Interspecific competition, environmental gradient, gene flow, and the coevolution of species’ border. Am Nat 155:582–605CrossRefGoogle Scholar
  13. Clark CW, Rosenzweig ML (1994) Extinction and colonization processes: parameters estimates from sporadic surveys. Am Nat 143:583–596CrossRefGoogle Scholar
  14. Curnutt JL, Pimm SL, Maurer BA (1996) Population variability of sparrows in space and time. Oikos 76:131–144CrossRefGoogle Scholar
  15. Diamond JM, May RM (1977) Species turnover rates on islands: dependence on census interval. Science 197:266–270PubMedCrossRefGoogle Scholar
  16. Dias PC (1996) Sources and sinks in population biology. Trends Ecol Evol 11:326–330PubMedCrossRefGoogle Scholar
  17. Fortin M, Dale M (2005) Spatial analysis: a guide for ecologists. Cambridge University Press, CambridgeGoogle Scholar
  18. Gaston KJ (2003) The structure and dynamics of geographic ranges. Oxford series in ecology and evolution. Oxford University Press, New YorkGoogle Scholar
  19. Gonzalez A, Holt RD (2002) The inflationary effects of environmental fluctuations in source-sink systems. Proc Natl Acad Sci USA 99:14872–14877PubMedCrossRefGoogle Scholar
  20. Guo Q, Taper M, Schoenberger M, Brandle J (2005) Spatial-temporal population dynamics across species range: from centre to margin. Oikos 108:47–57CrossRefGoogle Scholar
  21. Harding KC, McNamara JM (2002) A unifying framework for metapopulation dynamics. Am Nat 160:173–85PubMedCrossRefGoogle Scholar
  22. Hanski I (1999) Metapopulation ecology. Oxford University PressGoogle Scholar
  23. Hanski I, Ovaskainen O (2000) The metapopulation capacity of a fragmented landscape. Nature 404:755–758. doi:10.1038/35008063 PubMedCrossRefGoogle Scholar
  24. Hengeveld R, Haeck J (1982) The distribution of abundance. I. measurements. J Biogeogr 9:303–316CrossRefGoogle Scholar
  25. Holland MD, Hastings A (2008) Strong effect of dispersal network structure on ecological dynamics. Nature 456:792–795. doi:10.1038/nature07395 PubMedCrossRefGoogle Scholar
  26. Holt RD (1983) Lecture notes in biomathematics, chap. Models for peripheral populations: the role of immigration. Springer-Verlag, Berlin, pp 25–32Google Scholar
  27. Holt RD (2003) On the evolutionary ecology of species’ range. Evol Ecol Res 5:159–178Google Scholar
  28. Holt RD, Keitt TH (2000) Alternative causes for range limits: a metapopulation perspective. Ecol Lett 3:41–47CrossRefGoogle Scholar
  29. Holt RD, Keitt TH (2005) Species’ borders: a unifying theme in ecology. Oikos 108:3–6CrossRefGoogle Scholar
  30. Holt RD, Pickering J (1985) Infectious disease and species coexistence: a model of lotka-volterra form. Am Nat 126:196–211CrossRefGoogle Scholar
  31. Holt RD, Lawton JH, Gaston KJ, Blackburn TM (1997) On the relationship between range size and local abundance: back to basics. Oikos 78:183–190CrossRefGoogle Scholar
  32. Holt RD, Keitt TH, Lewis MA, Maurer BA, Taper ML (2005) Theoretical models of species? Borders: single species approaches. Oikos 108:18–27CrossRefGoogle Scholar
  33. Hosmer DW, Lemeshow S, May S (2011) Applied survival analysis: regression modeling of time to event data. Wiley, HobokenGoogle Scholar
  34. Jansen VAA, Yoshimura J (1998) Populations can persist in an environment consisting of sink habitats only. Proc Natl Acad Sci USA 95:3696–3698PubMedCrossRefGoogle Scholar
  35. Kawecki TJ, Holt RD (2002) Evolutionary consequences of asymmetric dispersal rates. Am Nat 160:333–347PubMedCrossRefGoogle Scholar
  36. Kearney M, Porter W (2009) Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol Lett 12:334–350. doi:10.1111/j.1461-0248.2008.01277.x PubMedCrossRefGoogle Scholar
  37. Keitt TH, Urban DL, Milne BT (1997) Detecting critical scales in fragmentes landscapes. Conserv Ecol 1:4Google Scholar
  38. Keymer JE, Marquet PA, Velasco-Hernández JX, Levin SA (2000) Extinction thresholds and metapopulation persistence in dynamic landscapes. Am Nat 156:478–494CrossRefGoogle Scholar
  39. Kirkpatrick M, Barton NH (1997) Evolution of a species range. Am Nat 150:1–23PubMedCrossRefGoogle Scholar
  40. Klimkiewicz MK, Futcher AG (1989) Longevity records of North American birds: supplement 1. J Field Ornithol 60:469–494Google Scholar
  41. Labra F, Lagos NA, Marquet PA (2003) Dispersal and transient dynamics in metapopulations. Ecol Let 6:197–204. doi:10.1046/j.1461-0248.2003.00413.x CrossRefGoogle Scholar
  42. Levins R (1970) Some mathematical questions in biology, chap. Extinction, 77–107. American Mathematical Society, ProvidenceGoogle Scholar
  43. Liebhold AM, Rossi RE, Kemp WP (1993) Geostatistics and geographic information systems in applied insect ecology. Annu Rev Entomol 38:303–327. doi:10.1146/annurev.en.38.010193.001511 CrossRefGoogle Scholar
  44. MacArthur RH (1960) On the relative abundance of species. Am Nat 94:25–37CrossRefGoogle Scholar
  45. MacArthur RH, Levins R (1964) Competition, habitat selection, and character displacement in a patchy environment. Proc Natl Acad Sci USA 51:1207–1210PubMedCrossRefGoogle Scholar
  46. MacKenzie D, Nichols JD, Royle JA, Pollock KH, Bailey LL, Hines JE (2005) Occupancy estimation and modeling: inferring patterns and dynamics of species occurrence. Academic, San DiegoGoogle Scholar
  47. Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197CrossRefGoogle Scholar
  48. Marzluff JM, Balda RP (1989) Causes and consequences of female-based dispersal in a flock-living bird, the Piñon jay. Ecology 70:316–328CrossRefGoogle Scholar
  49. Marzluff JM, Balda RP (1992) The Pinyon jay: behavioral ecology of a colonial and cooperative corvid. T. & A.D. Poyser, LondonGoogle Scholar
  50. Maurer B, Brown J (1989) Distributional consequences of spatial variation in local demographic processes. Ann Zool Fenn 26:121–131Google Scholar
  51. McGill B, Collins C (2003) A unified theory for macroecology based on spatial patterns of abundance. Evol Ecol Res 5:469–492Google Scholar
  52. McRae BH, Beier P (2007) Circuit theory predicts gene flow in plant and animal populations. Proc Natl Acad Sci USA 104:19885–19890. doi:10.1073/pnas.0706568104 PubMedCrossRefGoogle Scholar
  53. McRae BH, Dickson BG, Keitt TH, Shah VB (2008) Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89:2712–2724. doi:10.1890/07-1861.1 PubMedCrossRefGoogle Scholar
  54. Morlon H, White EP, Etienne RS, Green JL, Ostling A, Alonso D, Enquist BJ, He F, Hurlbert A, Magurran AE, Maurer BA, McGill BJ, Olff H, Storch D, Zillio T (2009) Taking species abundance distributions beyond individuals. Ecol Lett 12:488–501. doi:10.1111/j.1461-0248.2009.01318.x PubMedCrossRefGoogle Scholar
  55. Pearman PB, Guisan A, Broennimann O, Randin CF (2008) Niche dynamics in space and time. Trends Ecol Evol 23:149–158. doi:10.1016/j.tree.2007.11.005 PubMedCrossRefGoogle Scholar
  56. Peterson AT, Soberón J, Pearson RG, Anderson RP, Martinez-Meyer E, Nakamura M, Araùjo MB (2011) Ecological niches and geographic distributions. Princeton University Press, PrincetonGoogle Scholar
  57. Pulliam RH (1988) Sources, sinks, and population regulation. Am Nat 132:652–661CrossRefGoogle Scholar
  58. Ronce O (2007) How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annu Rev Ecol Syst 38:231–253. doi:10.1146/annurev.ecolsys.38.091206.095611 CrossRefGoogle Scholar
  59. Royle JA, Link WA (2006) Generalized site occupancy models allowing for false positive and false negative errors. Ecology 87:835–841PubMedCrossRefGoogle Scholar
  60. Samaniego H, Srandour G, Milne BT (2012) Analyzing Taylors Scaling Law: qualitative differences of social and territorial behavior on colonization/extinction dynamics. Popul Ecol 54:213–223. doi:10.1007/s10144-011-0287-0 CrossRefGoogle Scholar
  61. Sauer JR, Hines JE, Fallon J (2005) The north american breeding bird survey, results and analysis 1966–2005. Version 6.2.2006, Tech. rep. USGS Patuxent Wildlife Research Center, LaurelGoogle Scholar
  62. Turelli M, Barton N, Coyne J (2001) Theory and speciation. Trends Ecol Evol 16:330–343PubMedCrossRefGoogle Scholar
  63. Venables WN, Ripley BD (2002) Modern applied statistics with S-PLUS, 3rd edn. Springer, New YorkCrossRefGoogle Scholar
  64. Williams CK, Ives AR, Applegate RD (2003) Population dynamics across geographical ranges: time-series analyses of three small game species. Ecology 84:2654–2667CrossRefGoogle Scholar
  65. Wintle BA, McCarthy MA, Parris KM, Burgman MA (2004) Precision and bias of methods for estimating point survey detection probabilities. Ecol Appl 14:703–712CrossRefGoogle Scholar
  66. Zhu Z, Evans D (1994) United states forest types and predicted percent cover from AVHRR data. Photogramm Eng Rem S 60:525–531Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Center for Nonlinear Studies, Los Alamos National LaboratoryLos AlamosUSA
  2. 2.Facultad de Ciencias Forestales y Recursos NaturalesUniversidad Austral de ChileValdiviaChile
  3. 3.Center for Advanced Studies in Ecology and Biodiversity and Departamento de EcologíaPontificia Universidad Católica de ChileSantiagoChile
  4. 4.Institute of Ecology and BiodiversitySantiagoChile
  5. 5.The Santa Fe InstituteSanta FeUSA

Personalised recommendations