Theoretical Ecology

, Volume 5, Issue 2, pp 297–309 | Cite as

Demographic heterogeneity impacts density-dependent population dynamics

  • Joseph P. StoverEmail author
  • Bruce E. Kendall
  • Gordon A. Fox
Original paper


Among-individual variation in vital parameters such as birth and death rates that is unrelated to age, stage, sex, or environmental fluctuations is referred to as demographic heterogeneity. This kind of heterogeneity is prevalent in ecological populations, but is almost always left out of models. Demographic heterogeneity has been shown to affect demographic stochasticity in small populations and to increase growth rates for density-independent populations. The latter is due to “cohort selection,” where the most frail individuals die out first, lowering the cohort’s average mortality as it ages. The importance of cohort selection to population dynamics has only recently been recognized. We use a continuous-time model with density dependence, based on the logistic equation, to study the effects of demographic heterogeneity in mortality and reproduction. Reproductive heterogeneity is introduced in three ways: parent fertility, offspring viability, and parent–offspring correlation. We find that both the low-density growth rate and the equilibrium population size increase as the magnitude of mortality heterogeneity increases or as parent–offspring phenotypic correlation increases. Population dynamics are affected by complex interactions among the different types of heterogeneity, and trade-off scenarios are examined which can sometimes reverse the effect of increased heterogeneity. We show that there are a number of different homogeneous approximations to heterogeneous models, but all fail to capture important parts of the dynamics of the full model.


Demographic heterogeneity Individual variation Frailty Cohort selection Logistic model 



We thank two anonymous reviewers for helpful comments which improved the manuscript. This material is based upon work supported by the National Science Foundation under grant no. 615024.


  1. Bessa-Gomes C, Legendre S, Clobert J (2004) Allee effects, mating systems and the extinction risk in populations with two sexes. Ecol Lett 7(9):802–812. doi: 10.1111/j.1461-0248.2004.00632.x CrossRefGoogle Scholar
  2. Bollinger EK, Gavin TA (2004) Responses of nesting bobolinks (Dolichonyx oryzivorus) to habitat edges. Auk 121(3):767–776. doi: 10.1642/0004-8038(2004)121[0767:RONBDO]2.0.CO%3B2 CrossRefGoogle Scholar
  3. Boulding E, Van Alstyne K (1993) Mechanisms of differential survival and growth of two species of Littorina on wave-exposed and on protected shores. J Exp Mar Biol Ecol 169(2):139–166. doi: 10.1016/0022-0981(93)90191-P CrossRefGoogle Scholar
  4. Brown GP, Shine R (2009) Beyond size-number trade-offs: clutch size as a maternal effect. Philos Trans R Soc Lond, B Biol Sci 364(1520):1097–1106. doi: 10.1098/rstb.2008.0247 CrossRefGoogle Scholar
  5. Carey JR, Liedo P, Orozco D (1992) Slowing of mortality-rates at older ages in large medfly cohorts. Science 258(5081):457–461. doi: 10.1126/science.1411540 PubMedCrossRefGoogle Scholar
  6. Casellas J, Noguera JL, Varona L, Sánchez A, Arqué M, Piedrafita J (2004) Viability of Iberian × Meishan F2 newborn pigs. II. Survival analysis up to weaning. J Anim Sci 82(7):1925–1930. PubMedGoogle Scholar
  7. Caswell H, Weeks DE (1986) Two-sex models: Chaos, extinction, and other dynamic consequences of sex. The American Naturalist 128(5):707–735. CrossRefGoogle Scholar
  8. Cohen JE (1986) An uncertainty principle in demography and the unisex issue. Am Stat 40(1):32–39. PubMedCrossRefGoogle Scholar
  9. Conner MM, White GC (1999) Effects of individual heterogeneity in estimating the persistence of small populations. Natural Resource Modeling 12:109–127. doi: 10.1111/j.1939-7445.1999.tb00005.x Google Scholar
  10. Dennis B, Desharnais RA, Cushing JM, Henson SM, Costantino RF (2001) Estimating chaos and complex dynamics in an insect population. Ecol Monogr 71(2):277–303. doi: 10.1890/0012-9615(2001)071[0277:ECACDI]2.0.CO%3B2 CrossRefGoogle Scholar
  11. Ducrocq V, Besbes B, Protais M (2000) Genetic improvement of laying hens viability using survival analysis. Genetics, Selection, Evolution 32(1):23–40. doi: 10.1051/gse%3A2000104 PubMedCrossRefGoogle Scholar
  12. Fox GA (2005) Extinction risk of heterogeneous populations. Ecology 86(5):1191–1198. doi: 10.1890/04-0594 CrossRefGoogle Scholar
  13. Fox CW, Czesak ME (2000) Evolutionary ecology of progeny size in arthropods. Annu Rev Entomol 45:341–369. doi: 10.1146/annurev.ento.45.1.341 PubMedCrossRefGoogle Scholar
  14. Fox GA, Kendall BE (2002) Demographic stochasticity and the variance reduction effect. Ecology 83(7):1928–1934. doi: 10.2307/3071775 CrossRefGoogle Scholar
  15. Fox GA, Kendall BE, Fitzpatrick JW, Woolfenden GE (2006) Consequences of heterogeneity in survival probability in a population of Florida scrub-jays. J Anim Ecol 75(4):921–927. doi: 10.1111/j.1365-2656.2006.01110.x CrossRefGoogle Scholar
  16. Franklin AB, Anderson DR, Gutiérrez RJ, Burnham KP (2000) Climate, habitat quality, and fitness in Northern Spotted Owl populations in northwestern California. Ecol Monogr 70(4):539–590. doi: 10.1890/0012-9615%282000%29070%5B0539%3ACHQAFI%5D2.0.CO%3B2 CrossRefGoogle Scholar
  17. Gates JE, Gysel LW (1978) Avian nest dispersion and fledging success in field-forest ecotones. Ecology 59:871–883. doi: 10.2307/1938540 CrossRefGoogle Scholar
  18. Gerdes LU, Jeune B, Ranberg KA, Nybo H, Vaupel JW (2000) Estimation of apolipoprotein E genotype-specific relative mortality risks from the distribution of genotypes in centenarians and middle-aged men: Apolipoprotein E gene is a “frailty gene,” not a “longevity gene”. Genet Epidemiol 19(3):202–210. doi: 10.1002/1098-2272%28200010%2919%3A3%3C202%3AAID-GEPI2%3E3.0.CO%3B2-Q PubMedCrossRefGoogle Scholar
  19. Girondot M, Pieau C (1993) Effects of sexual differences of age at maturity and survival on population sex ratio. Evol Ecol 7:645–650. doi: 10.1007/BF01237827 CrossRefGoogle Scholar
  20. Isberg SR, Thomson PC, Nicholas FW (2006) Quantitative analysis of production traits in saltwater crocodiles (Crocodylus porosus): III. Juvenile survival. J Anim Breed Genet 123(1):44–47. doi: 10.1111/j.1439-0388.2006.00557.x PubMedCrossRefGoogle Scholar
  21. Jenouvrier S, Caswell H, Barbraud C, Weimerskirch H (2010) Mating behavior, population growth, and the operational sex ratio: a periodic two-sex model approach. Am Nat 175(6):739–752. doi: 10.1086/652436 PubMedCrossRefGoogle Scholar
  22. Johnstone RA (2004) Begging and sibling competition: how should offspring respond to their rivals? Am Nat 163(3):388–406. doi: 10.1086/375541 PubMedCrossRefGoogle Scholar
  23. Jones LE, Ellner SP (2007) Effects of rapid prey evolution on predatorŰprey cycles. J Math Biol 55:541–573. doi: 10.1007/s00285-007-0094-6 PubMedCrossRefGoogle Scholar
  24. Kendall BE, Fox GA (2002) Variation among individuals and reduced demographic stochasticity. Conserv Biol 16(1):109–116, doi: 10.1046/j.1523-1739.2002.00036.x CrossRefGoogle Scholar
  25. Kendall BE, Fox GA (2003) Unstructured individual variation and demographic stochasticity. Conserv Biol 17(4):1170–1172. doi: 10.1046/j.1523-1739.2003.02411.x CrossRefGoogle Scholar
  26. Kendall B, Fox G, Fujiwara M, Nogeire T (2011) Demographic heterogeneity, cohort selection, and population growth. Ecology (in press)Google Scholar
  27. Landis RM, Gurevitch J, Fox GA, Fang W, Taub DR (2005) Variation in recruitment and early demography in Pinis ridida following crown fire in the pine barrens of Long Island, New York. J Ecol 93(3):607–617. doi: 10.1111/j.1365-2745.2005.00996.x CrossRefGoogle Scholar
  28. Lindström J (1999) Early development and fitness in birds and mammals. Trends Ecol Evol 14(9):343–348. doi: 10.1016/S0169-5347%2899%2901639-0 PubMedCrossRefGoogle Scholar
  29. Lloyd-Smith JO, Schreiber SJ, Kopp PE (2005) Superspreading and the effect of individual variation on disease emergence. Nature 438(7066):355–359. doi: 10.1038/nature04153 PubMedCrossRefGoogle Scholar
  30. Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates, SunderlandGoogle Scholar
  31. Manolis JC, Andersen DE, Cuthbert FJ (2002) Edge effect on nesting success of ground nesting birds near regenerating clearcuts in a forest-dominated landscape. Auk 119(4):955–970. doi: 10.1642/0004-8038%282002%29119%5B0955%3AEEONSO%5D2.0.CO%3B2 CrossRefGoogle Scholar
  32. Manser MB, Avey G (2000) The effect of pup vocalisations on food allocation in a cooperative mammal, the meerkat (Suricata suricatta). Behav Ecol Sociobiol 48(6):429–437. doi: 10.1007/s002650000248 CrossRefGoogle Scholar
  33. Manton KG, Stallard E, Vaupel JW (1981) Methods for comparing the mortality experience of heterogeneous populations. Demography 18(3):389–410. PubMedCrossRefGoogle Scholar
  34. Marshall DJ, Keough MJ (2007) The evolutionary ecology of offspring size in marine invertebrates. Adv Mar Biol 53:1–60. doi: 10.1016/S0065-2881%2807%2953001-4 PubMedCrossRefGoogle Scholar
  35. McGinley MA, Temme DH, Geber MA (1987) Parental investment in offspring in variable environments: theoretical and empirical considerations. Am Nat 130(3):370–398. CrossRefGoogle Scholar
  36. Melbourne B, Hastings A (2008) Extinction risk depends strongly on factors contributing to stochasticity. Nature 454(7200):100–103. doi: 10.1038/nature06922 PubMedCrossRefGoogle Scholar
  37. Menge BA, Berlow EL, Blanchette CA (1994) The keystone species concept—variation in interaction strength in a rocky intertidal habitat. Ecol Monogr 64(3):249–286. doi: 10.2307/2937163 CrossRefGoogle Scholar
  38. Robert A, Sarrazin F, Couvet D (2003) Variation among individuals, demographic stochasticity, and extinction: response to Kendall and Fox. Conserv Biol 17(4):1166–1169. doi: 10.1046/j.1523-1739.2003.02259.x CrossRefGoogle Scholar
  39. Smith CC, Fretwell SD (1974) The optimal balance between size and number of offspring. Am Nat 108(962):499–506. CrossRefGoogle Scholar
  40. Uchmański J (2000) Individual variability and population regulation: an individual-based model. Oikos 90(3):539–548. doi: 10.1034/j.1600-0706.2000.900312.x CrossRefGoogle Scholar
  41. Vaupel JW, Yashin AI (1983) The deviant dynamics of death in heterogeneous populations. Research Reports RR-83-1, International Institute for Applied Systems Analysis, Laxenburg, AustriaGoogle Scholar
  42. Vaupel JW, Yashin AI (1985) Heterogeneity’s ruses: some surprising effects of selection on population dynamics. Am Stat 39(3):176–185. PubMedCrossRefGoogle Scholar
  43. Vaupel JW, Carey JR (1993) Compositional interpretations of medfly mortality. Science 260(5114):1666–1667. doi: 10.1126/science.8503016 PubMedCrossRefGoogle Scholar
  44. Venable DL (1992) Size-number trade-offs and the variation of seed size with plant resource status. Am Nat 140(2):287–304. CrossRefGoogle Scholar
  45. Veran S, Beissinger SR (2009) Demographic origins of skewed operational and adult sex ratios: perturbation analyses of two-sex models. Ecol Lett 12(2):129–143. doi: 10.1111/j.1461-0248.2008.01268.x PubMedCrossRefGoogle Scholar
  46. Vindenes Y, Engen S, Sæther BE (2008) Individual heterogeneity in vital parameters and demographic stochasticity. Am Nat 171(4):455–467. doi: 10.1086/528965 PubMedCrossRefGoogle Scholar
  47. von Holst D, Hutzelmeyer H, Kaetzke P, Khaschei M, Rödel HG, Schrutka H (2002) Social rank, fecundity and lifetime reproductive success in wild european rabbits (oryctolagus cuniculus). Behav Ecol Sociobiol 51(3):245–254. doi: 10.1007/s00265-001-0427-1 CrossRefGoogle Scholar
  48. Winter M, Johnson DH, Faaborg J (2000) Evidence for edge effects on multiple levels in tallgrass prairie. Condor 102(2):256–266. CrossRefGoogle Scholar
  49. Yashin AI, Iachine IA, Harris JR (1999) Half of the variation in susceptibility to mortality is genetic: findings from Swedish twin survival data. Behav Genet 29(1):11–19. doi: 10.1023/A%3A1021481620934 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Joseph P. Stover
    • 1
    Email author
  • Bruce E. Kendall
    • 2
  • Gordon A. Fox
    • 3
  1. 1.Earth Research InstituteUniversity of CaliforniaSanta BarbaraUSA
  2. 2.Bren School of Environmental Science & ManagementUniversity of CaliforniaSanta BarbaraUSA
  3. 3.Department of Integrative BiologyUniversity of South FloridaTampaUSA

Personalised recommendations