Theoretical Ecology

, Volume 5, Issue 2, pp 253–264 | Cite as

Leadership, social learning, and the maintenance (or collapse) of migratory populations

  • William F. Fagan
  • Robert Stephen Cantrell
  • Chris Cosner
  • Thomas Mueller
  • Andrew E. Noble
Original paper

Abstract

Long-distance animal migrations are complex, population-level phenomena that emerge in seasonal landscapes as a result of the interplay between environmental influences (e.g., resources, predators) and social interactions among conspecifics. When landscapes change with respect to phenology or connectivity, the dynamics of migratory species can abruptly shift, in many cases leading to a cessation of migration and dramatic decreases in population size. We develop a difference equation modeling framework to explore how the social transfer of knowledge from informed “leader” individuals enhances the performance of seasonally migratory versus resident populations. The model permits a wide range of population-level behaviors including alternative stable states, partial migration equilibria, and complex dynamics, but we focus our efforts on investigations of migration collapse mediated by a lack of informed leaders that can arise from changes in landscape structure, survivorship, reproduction, and/or social learning. Migration collapse is a hysteretic phenomenon in this model and results either in extinction of the population or purely resident behavior. The hysteretic nature of migration failure, which hinges on cultural transmission of knowledge, highlights a potentially critical role for behavior and social learning in aspects of spatial ecology and conservation biology.

Keywords

Hysteresis Migration Leadership Migratory movements Population collapse Range residency Social learning 

References

  1. Akesson S, Hedenstrom A (2007) How migrants get there: migratory performance and orientation. Bioscience 57:123–133CrossRefGoogle Scholar
  2. Alerstam T (2006) Conflicting evidence about long-distance animal navigation. Science 313:791–794PubMedCrossRefGoogle Scholar
  3. Alerstam T, Hedenstrom A, Akesson S (2003) Long-distance migration: evolution and determinants. Oikos 103:247–260CrossRefGoogle Scholar
  4. Berthold P (2001) Bird migration: a general survey. Oxford University Press, OxfordGoogle Scholar
  5. Blanquart F, Gandon S (2011) Evolution of migration in a periodically changing environment. Am Nat 177:188–201PubMedCrossRefGoogle Scholar
  6. Bolger DT, Newmark WD, Morrison TA, Doak DF (2008) The need for integrative approaches to understand and conserve migratory ungulates. Ecol Lett 11:63–77PubMedGoogle Scholar
  7. Both C, Bouwhuis S, Lessells CM, Visser ME (2006) Climate change and population declines in a long-distance migratory bird. Nature 441:81–83PubMedCrossRefGoogle Scholar
  8. Chernetsov N, Berthold P, Querner U (2004) Migratory orientation of first-year white storks (Ciconia ciconia): inherited information and social interactions. J Exp Biol 207:937–943PubMedCrossRefGoogle Scholar
  9. Codling EA, Pitchford JW, Simpson SD (2007) Group navigation and the “many-wrongs principle” in models of animal movement. Ecology 88:1864–1870PubMedCrossRefGoogle Scholar
  10. Conradt L, Roper T (2005) Consensus decision making in animals. Trends Ecol Evol 20:449–456PubMedCrossRefGoogle Scholar
  11. Cosner C (1996) Variability, vagueness and comparison methods for ecological models. Bull Math Biol 58:207–246CrossRefGoogle Scholar
  12. Couzin ID, Krause J, Franks NR, Levin SA (2005) Effective leadership and decision-making in animal groups on the move. Nature 433:513–516PubMedCrossRefGoogle Scholar
  13. Dell’Ariccia G, Dell’Omo G, Wolfer DP, Lipp H (2008) Flock flying improves pigeons’ homing: GPS track analysis of individual flyers versus small groups. Anim Behav 76:1165–1172CrossRefGoogle Scholar
  14. Dodson JJ (1988) The nature and role of learning in the orientation and migratory behavior of fishes. Environ Biol Fish 23:161–182CrossRefGoogle Scholar
  15. Ellis DH, Sladen WJL, Lishman WA, Clegg KR, Duff JW, Gee GF, Lewis JC (2003) Motorized migrations: the future or mere fantasy? Bioscience 53:260–264CrossRefGoogle Scholar
  16. Fransson T, Jakobsson S, Johansson P, Kullberg C, Lind J, Vallin A (2001) Bird migration—magnetic cues trigger extensive refuelling. Nature 414:35–36PubMedCrossRefGoogle Scholar
  17. Fryxell J, Greever J, Sinclair A (1988) Why are migratory ungulates so abundant? Am Nat 131:781–798CrossRefGoogle Scholar
  18. Gordo O, Brotons L, Ferrer X, Comas P (2005) Do changes in climate patterns in wintering areas affect the timing of the spring arrival of trans-Saharan migrant birds? Glob Chang Biol 11:12–21CrossRefGoogle Scholar
  19. Griswold CK, Taylor CM, Norris DR (2010) The evolution of migration in a seasonal environment. Proc R Soc B 277:2711–2720PubMedCrossRefGoogle Scholar
  20. Guttal V, Couzin ID (2010) Social interactions, information use, and the evolution of collective migration. Proc Natl Acad Sci USA 107:16172–16177PubMedCrossRefGoogle Scholar
  21. Hake M, Kjellen N, Alerstam T (2003) Age-dependent migration strategy in honey buzzards Pernis apivorus tracked by satellite. Oikos 103:385–396CrossRefGoogle Scholar
  22. Helfman GS, Schulz ET (1984) Social transmission of behavioral traditions in a coral reef fish. Anim Behav 32:379–384CrossRefGoogle Scholar
  23. Lindeyer CM, Reader SM (2010) Social learning of escape routes in zebrafish and the stability of behavioural traditions. Anim Behav 79:827–834CrossRefGoogle Scholar
  24. Lundberg P (1988) The evolution of partial migration in birds. Trends Ecol Evol 3:172–175PubMedCrossRefGoogle Scholar
  25. Morita K, Yamamoto S, Hoshino N (2000) Extreme life history change of white-spotted char (Salvelinus leucomaenis) after damming. Can J Fish Aquat Sci 57:1300–1306CrossRefGoogle Scholar
  26. Nelson ME (1998) Development of migratory behavior in northern white- tailed deer. Can J Zool 76:426–432CrossRefGoogle Scholar
  27. Newmark WD (2008) Isolation of African protected areas. Front Ecol Environ 6:321–328CrossRefGoogle Scholar
  28. Norris DR, Taylor CM (2006) Predicting the consequences of carry-over effects for migratory populations. Biol Lett 2:148–151PubMedCrossRefGoogle Scholar
  29. Olsson IC, Greenberg LA, Bergman E, Wysujack K (2006) Environmentally induced migration: the importance of food. Ecol Lett 9:645–651PubMedCrossRefGoogle Scholar
  30. Pulido F (2007) The genetics and evolution of avian migration. Bioscience 57:165–174CrossRefGoogle Scholar
  31. Sumpter D, Buhl J, Biro D, Couzin I (2008) Information transfer in moving animal groups. Theory Biosci 127:177–186PubMedCrossRefGoogle Scholar
  32. Sutherland WJ (1996) Predicting consequences of habitat loss for migratory populations. Proc R Soc Lond B 263:1325–1327CrossRefGoogle Scholar
  33. Sutherland WJ (1998) Evidence for flexibility and constraint in migration systems. J Avian Biol 29:441–446CrossRefGoogle Scholar
  34. Taylor CM, Norris DR (2007) Predicting conditions for migration: effects of density dependence and habitat quality. Biol Lett 3:280–283PubMedCrossRefGoogle Scholar
  35. Thorup K, Bisson I, Bowlin MS, Holland RA, Wingfield JC, Ramenofsky M, Wikelski M (2007) Evidence for a navigational map stretching across the continental US in a migratory songbird. Proc Natl Acad Sci 104:18115–18119PubMedCrossRefGoogle Scholar
  36. Valenzuela LO, Sironi M, Rowntree VJ, Seger J (2009) Isotopic and genetic evidence for culturally inherited site fidelity to feeding grounds in southern right whales (Eubalaena australis). Mol Ecol 18:782–791PubMedCrossRefGoogle Scholar
  37. van Noordwijk AJ, Pulido F, Helm B, Coppack T, Delingat J, Dingle H, Hedenstrom A, van der Jeugd H, Marchetti C, Nilsson A, Perez-Tris J (2006) A framework for the study of genetic variation in migratory behaviour. J Ornithol 147:221–233CrossRefGoogle Scholar
  38. Ward AJW, Sumpter DJT, Couzing ID, Hart PJB, Krause J (2008) Quorum decision-making facilitates information transfer in fish shoals. Proc Natl Acad Sci USA 105:6948–6953PubMedCrossRefGoogle Scholar
  39. Wiltschko W, Weindler P, Wiltschko R (1998) Interaction of magnetic and celestial cues in the migratory orientation of passerines. J Avian Biol 29:606–617CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • William F. Fagan
    • 1
  • Robert Stephen Cantrell
    • 2
  • Chris Cosner
    • 2
  • Thomas Mueller
    • 1
  • Andrew E. Noble
    • 1
  1. 1.Department of BiologyUniversity of MarylandCollege ParkUSA
  2. 2.Department of MathematicsUniversity of MiamiCoral GablesUSA

Personalised recommendations