Advertisement

Theoretical Ecology

, Volume 4, Issue 2, pp 283–288 | Cite as

Mechanistic modelling of the three waves of the 1918 influenza pandemic

  • DaiHai He
  • Jonathan Dushoff
  • Troy Day
  • Junling Ma
  • David J. D. Earn
Original Paper

Abstract

Influenza pandemics through history have shown very different patterns of incidence, morbidity and mortality. In particular, pandemics in different times and places have shown anywhere from one to three “waves” of incidence. Understanding the factors that underlie variability in temporal patterns, as well as patterns of morbidity and mortality, is important for public health planning. We use a likelihood-based approach to explore different potential explanations for the three waves of incidence and mortality seen in the 1918 influenza pandemic in London, England. Our analysis suggests that temporal variation in transmission rate provides the best proximate explanation and that the variation in transmission required to generate these three epidemic waves is within biologically plausible values.

Keywords

Influenza Pandemic 1918 London, England  Time series Mathematical modelling POMP 

Notes

Acknowledgements

We were supported by the Canadian Institutes of Health Research and the Public Health Agency of Canada. Computations were performed on SHARCNET (http://www.sharcnet.ca). The views expressed in this paper do not reflect the views of the Public Health Agency of Canada.

References

  1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Contr 19:716–723 doi: 10.1109/TAC.1974.1100705 CrossRefGoogle Scholar
  2. Anderson D, Watson R (1980) On the spread of a disease with gamma distributed latent and infectious periods. Biometrika 67:191–198CrossRefGoogle Scholar
  3. Bootsma MC, Ferguson NM (2007) The effect of public health measures on the 1918 influenza pandemic in U.S. cities. Proc Natl Acad Sci U S A 104:7588–7593PubMedCrossRefGoogle Scholar
  4. Bretó C, He D, Ionides EL King AA (2008) Time series analysis via mechanistic models. Ann Appl Stat 3:319–348CrossRefGoogle Scholar
  5. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New YorkGoogle Scholar
  6. Caley P, Philp DJ, McCracken K (2008) Quantifying social distancing arising from pandemic influenza. J R Soc Interface 5:631–639PubMedCrossRefGoogle Scholar
  7. Chowell G, Bettencourt LMA, Johnson N, Alonso WJ, Viboud C (2008) The 1918–1919 influenza pandemic in England and Wales: spatial patterns in transmissibility and mortality impact. Proc R Soc B 275:501–509PubMedCrossRefGoogle Scholar
  8. Day T, André J, Park A (2006) The evolutionary emergence of pandemic influenza. Proc R Soc Lond B Biol Sci 273:2945–2953CrossRefGoogle Scholar
  9. de Boor C (1978) A practical guide to splines. Springer, New YorkGoogle Scholar
  10. Doucet A, de Freita N, Gordon NJ (2001) Sequential Monte Carlo methods in practice. Springer, New YorkGoogle Scholar
  11. Dushoff J, Plotkin J, Levin S, Earn DJD (2004) Dynamical resonance can account for seasonality of influenza epidemics. Proc Natl Acad Sci U S A 101:16915–16916PubMedCrossRefGoogle Scholar
  12. Dushoff J, Plotkin JB, Viboud C, Earn DJD, Simonsen L (2006) Mortality due to influenza in the United States—an annualized regression approach using multiple-cause mortality data. Am J Epidemiol 163:181–187PubMedCrossRefGoogle Scholar
  13. Earn DJD, Dushoff J, Levin SA (2002) Ecology and evolution of the flu. Trends Ecol Evol 17:334–340CrossRefGoogle Scholar
  14. Eggo RM, Cauchemez S, Ferguson NM (2010) Spatial dynamics of the 1918 influenza pandemic in England, Wales and the United States. J R Soc Interface. doi: 10.1098/rsif.2010.0216 PubMedGoogle Scholar
  15. Ferguson NM, Cummings DA, Cauchemez S, Fraser C, Riley S, Meeyai A, Iamsirithaworn S, Burke DS (2005) Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature 437:209–214 doi: 10.1038/nature04017 PubMedCrossRefGoogle Scholar
  16. Gillespie DT (1976) A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J Comput Phys 22:403–434CrossRefGoogle Scholar
  17. Hatchett RJ, Mecher CE, Lipsitch M (2007) Public health interventions and epidemic intensity during the 1918 influenza pandemic. Proc Natl Acad Sci U S A 104:7582–7587PubMedCrossRefGoogle Scholar
  18. He DH, Ionides EL, King AA (2009) Plug-and-play inference for disease dynamics: measles in large and small populations as a case study. J R Soc Interface. doi: 10.1098/rsif.2009.0151 PubMedGoogle Scholar
  19. Jordan EO (1927) Epidemic influenza: a survey. Chicago American Medical Association, ChicagoGoogle Scholar
  20. King AA, Ionides EL, Bretó CM, Ellner S, Kendall B (2009) POMP: statistical inference for partially observed Markov processes (R package). Available at http://pomp.r-forge.r-rproject.org
  21. King AA, Ionides EL, Pascual M, Bouma MJ (2008) Inapparent infections and cholera dynamics. Nature 454:877–879. doi: 10.1038/nature07084 PubMedCrossRefGoogle Scholar
  22. Lipsitch M, Viboud C (2009) Influenza seasonality: lifting the fog. Proc Natl Acad Sci U S A 106:3645–3646PubMedCrossRefGoogle Scholar
  23. Liu R, Wu J, Zhu H (2007) Media/psychological impact on multiple outbreaks of emerging infectious diseases. Comput Math Methods Med 8:153–164CrossRefGoogle Scholar
  24. Lloyd AL (2001) Realistic distributions of infectious periods in epidemic models: changing patterns of persistence and dynamics. Theor Popul Biol 60:59–71PubMedCrossRefGoogle Scholar
  25. Markel H, Lipman HB, Navarro JA, Sloan A, Michalsen JR, Stern AM, Cetron MS (2007) Nonpharmaceutical interventions implemented by U.S. cities during the 1918–1919 influenza pandemic. JAMA 298:644–654PubMedCrossRefGoogle Scholar
  26. Miller MA, Viboud C, Balinska M, Simonsen L (2009) The signature features of influenza pandemics implications for policy. N Engl J Med 360:2595–2598PubMedCrossRefGoogle Scholar
  27. Mills CE, Robins JM, Lipsitch M (2004) Transmissibility of 1918 pandemic influenza. Nature 432:904–906PubMedCrossRefGoogle Scholar
  28. Mishra AC, Chadha MS, Choudhary ML, Potdar VA (2010) Pandemic influenza (H1N1) 2009 is associated with severe disease in India. PLoS ONE 5:e10540. doi: 10.1371/journal.pone.0010540 CrossRefGoogle Scholar
  29. Rios-Doria D, Chowell G (2009) Qualitative analysis of the level of cross-protection between epidemic waves of the 1918–1919 influenza pandemic. J Theor Biol 261:584–592PubMedCrossRefGoogle Scholar
  30. Ross T, Zimmer S, Burke D, Crevar C, Carter D, Stark J, Giles B, Zimmerman R, Ostroff S, Lee B (2010) Seroprevalence following the second wave of pandemic 2009 H1N1 influenza. PLoS Curr influenza, p RRN1148Google Scholar
  31. Serfling RE (1963) Methods for current statistical analysis of excess pneumonia-influenza deaths. Publ Health Rep 78:494–506Google Scholar
  32. Shaman J, Pitzer VE, Viboud C, Grenfell BT, Lipsitch M (2010) Absolute humidity and the seasonal onset of influenza in the continental United States. PLoS Biol 8:e1000316. doi: 10.1371/journal.pbio.1000316 PubMedCrossRefGoogle Scholar
  33. Taubenberger JK, Morens DM (2006) 1918 influenza: the mother of all pandemics. Emerg Infect Dis 12:15–22PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • DaiHai He
    • 1
  • Jonathan Dushoff
    • 2
    • 3
  • Troy Day
    • 4
  • Junling Ma
    • 5
  • David J. D. Earn
    • 1
    • 3
  1. 1.Department of Mathematics & StatisticsMcMaster UniversityHamiltonCanada
  2. 2.Department of BiologyMcMaster UniversityHamiltonCanada
  3. 3.M.G. deGroote Institute for Infectious Disease ResearchMcMaster UniversityHamiltonCanada
  4. 4.Department of Mathematics & StatisticsQueen’s UniversityKingstonCanada
  5. 5.Department of Mathematics & StatisticsUniversity of VictoriaVictoriaCanada

Personalised recommendations