Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Where does the cargo go?: Solutions to provide experimental support for the “extracellular vesicle cargo transfer hypothesis”

  • 143 Accesses

Abstract

It is widely believed that extracellular vesicles (EVs) mediate intercellular communications by functioning as messengers. EVs contain various biomolecules, including nucleic acids and proteins, as cargo in the internal space. Thus, it has been postulated that this cargo can be transferred from donor cells to recipient cells, leading to phenotypic changes in the recipient cells. However, there is a lack of experimental evidence for the aforementioned hypothesis, that EVs function as messengers. This is presumably because of a lack of rigorous methodologies for EV research. Although cells usually incorporate nanoparticles (NPs) from the extracellular space via endocytosis, these NPs are processed through the endo/lysosomal system and do not escape to the cytoplasm unless they disrupt or fuse with the endo/lysosomal membrane. Whether EVs actually are capable of escaping endo/lysosomes is still debatable. In contrast, viruses have evolved to efficiently deliver their cargo (viral proteins and genetic material) into the cytoplasm of host (recipient) cells by circumventing endo/lysosomal degradation. Thus, it may be helpful to compare EVs to viruses in terms of cargo delivery. The present technological issues that hinder obtaining support for the “EV cargo transfer hypothesis” are summarized and potential solutions for EV research are proposed.

This is a preview of subscription content, log in to check access.

Fig. 1

Abbreviations

EV :

Extracellular vesicle

miRNA:

MicroRNA

NP:

Nanoparticle

R18:

Octadecyl rhodamine B chloride

VSV:

Vesicular stomatitis virus

References

  1. Ageta H, Ageta-Ishihara N, Hitachi K, Karayel O, Onouchi T, Yamaguchi H, Kahyo T, Hatanaka K, Ikegami K, Yoshioka Y, Nakamura K, Kosaka N, Nakatani M, Uezumi A, Ide T, Tsutsumi Y, Sugimura H, Kinoshita M, Ochiya T, Mann M, Setou M, Tsuchida K (2018) UBL3 modification influences protein sorting to small extracellular vesicles. Nat Commun 9:1–12. https://doi.org/10.1038/s41467-018-06197-y

  2. Aguilar HC, Henderson BA, Zamora JL, Johnston GP (2016) Paramyxovirus glycoproteins and the membrane fusion process. Curr Clin Microbiol Rep 3:142–154. https://doi.org/10.1007/s40588-016-0040-8

  3. Alvarez-Erviti L, Seow Y, Yin H et al (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29:341–345. https://doi.org/10.1038/nbt.1807

  4. Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, Mitchell PS, Bennett CF, Pogosova-Agadjanyan EL, Stirewalt DL, Tait JF, Tewari M (2011) Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A 108:5003–5008. https://doi.org/10.1073/pnas.1019055108

  5. Auber M, Fröhlich D, Drechsel O, Karaulanov E, Krämer-Albers EM (2019) Serum-free media supplements carry miRNAs that co-purify with extracellular vesicles. J Extracell Vesicles 8:1656042. https://doi.org/10.1080/20013078.2019.1656042

  6. Baglio SR, Rooijers K, Koppers-Lalic D, Verweij FJ, Pérez Lanzón M, Zini N, Naaijkens B, Perut F, Niessen HW, Baldini N, Pegtel DM (2015) Human bone marrow- and adipose-mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and tRNA species. Stem Cell Res Ther 6:127. https://doi.org/10.1186/s13287-015-0116-z

  7. Baietti MF, Zhang Z, Mortier E et al (2012) Syndecan–syntenin–ALIX regulates the biogenesis of exosomes. Nat Cell Biol 14:677–685. https://doi.org/10.1038/ncb2502

  8. Balaj L, Atai NA, Chen W, Mu D, Tannous BA, Breakefield XO, Skog J, Maguire CA (2015) Heparin affinity purification of extracellular vesicles. Sci Rep 5:10266. https://doi.org/10.1038/srep10266

  9. Bellingham SA, Shambrook M, Hill AF (2017) Quantitative analysis of Exosomal miRNA via qPCR and digital PCR. In: Hill AF (ed) Exosomes and microvesicles: methods and protocols. Springer New York, New York, pp 55–70

  10. Boelens MC, Wu TJ, Nabet BY, Xu B, Qiu Y, Yoon T, Azzam DJ, Twyman-Saint Victor C, Wiemann BZ, Ishwaran H, ter Brugge P, Jonkers J, Slingerland J, Minn AJ (2014) Exosome transfer from stromal to breast cancer cells regulates therapy resistance pathways. Cell 159:499–513. https://doi.org/10.1016/j.cell.2014.09.051

  11. Chevillet JR, Kang Q, Ruf IK, Briggs HA, Vojtech LN, Hughes SM, Cheng HH, Arroyo JD, Meredith EK, Gallichotte EN, Pogosova-Agadjanyan EL, Morrissey C, Stirewalt DL, Hladik F, Yu EY, Higano CS, Tewari M (2014) Quantitative and stoichiometric analysis of the microRNA content of exosomes. Proc Natl Acad Sci U S A 111:14888–14893. https://doi.org/10.1073/pnas.1408301111

  12. Cohen FS (2016) How viruses invade cells. Biophys J 110:1028–1032. https://doi.org/10.1016/j.bpj.2016.02.006

  13. Costa Verdera H, Gitz-Francois JJ, Schiffelers RM, Vader P (2017) Cellular uptake of extracellular vesicles is mediated by clathrin-independent endocytosis and macropinocytosis. J Control Release 266:100–108. https://doi.org/10.1016/j.jconrel.2017.09.019

  14. Feng D, Zhao WL, Ye YY, Bai XC, Liu RQ, Chang LF, Zhou Q, Sui SF (2010) Cellular internalization of exosomes occurs through phagocytosis. Traffic 11:675–687. https://doi.org/10.1111/j.1600-0854.2010.01041.x

  15. Ferguson SW, Nguyen J (2016) Exosomes as therapeutics: the implications of molecular composition and exosomal heterogeneity. J Control Release 228:179–190. https://doi.org/10.1016/j.jconrel.2016.02.037

  16. Fujita K, Somiya M, Kuroda S, Hinuma S (2019) Induction of lipid droplets in non-macrophage cells as well as macrophages by liposomes and exosomes. Biochem Biophys Res Commun. https://doi.org/10.1016/j.bbrc.2019.01.078

  17. Gilleron J, Querbes W, Zeigerer A, Borodovsky A, Marsico G, Schubert U, Manygoats K, Seifert S, Andree C, Stöter M, Epstein-Barash H, Zhang L, Koteliansky V, Fitzgerald K, Fava E, Bickle M, Kalaidzidis Y, Akinc A, Maier M, Zerial M (2013) Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat Biotechnol 31:638–646. https://doi.org/10.1038/nbt.2612

  18. Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A 89:5547–5551. https://doi.org/10.1073/pnas.89.12.5547

  19. Hagiwara K, Katsuda T, Gailhouste L, Kosaka N, Ochiya T (2015) Commitment of Annexin A2 in recruitment of microRNAs into extracellular vesicles. FEBS Lett 589:4071–4078. https://doi.org/10.1016/j.febslet.2015.11.036

  20. He C, Hu Y, Yin L, Tang C, Yin C (2010) Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 31:3657–3666. https://doi.org/10.1016/j.biomaterials.2010.01.065

  21. He D, Wang H, Ho S-L, Chan HN, Hai L, He X, Wang K, Li HW (2019) Total internal reflection-based single-vesicle in situ quantitative and stoichiometric analysis of tumor-derived exosomal microRNAs for diagnosis and treatment monitoring. Theranostics 9:4494–4507. https://doi.org/10.7150/thno.33683

  22. Hung ME, Leonard JN (2016) A platform for actively loading cargo RNA to elucidate limiting steps in EV-mediated delivery. J Extracell Vesicles 1:1–13. https://doi.org/10.3402/jev.v5.31027

  23. Kalra H, Simpson RJ, Ji H, Aikawa E, Altevogt P, Askenase P, Bond VC, Borràs FE, Breakefield X, Budnik V, Buzas E, Camussi G, Clayton A, Cocucci E, Falcon-Perez JM, Gabrielsson S, Gho YS, Gupta D, Harsha HC, Hendrix A, Hill AF, Inal JM, Jenster G, Krämer-Albers EM, Lim SK, Llorente A, Lötvall J, Marcilla A, Mincheva-Nilsson L, Nazarenko I, Nieuwland R, Nolte-'t Hoen EN, Pandey A, Patel T, Piper MG, Pluchino S, Prasad TS, Rajendran L, Raposo G, Record M, Reid GE, Sánchez-Madrid F, Schiffelers RM, Siljander P, Stensballe A, Stoorvogel W, Taylor D, Thery C, Valadi H, van Balkom B, Vázquez J, Vidal M, Wauben MH, Yáñez-Mó M, Zoeller M, Mathivanan S (2012) Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. PLoS Biol 10:e1001450. https://doi.org/10.1371/journal.pbio.1001450

  24. Kamerkar S, LeBleu VS, Sugimoto H et al (2017) Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature. https://doi.org/10.1038/nature22341

  25. Kanada M, Bachmann MH, Hardy JW et al (2015) Differential fates of biomolecules delivered to target cells via extracellular vesicles. Proc Natl Acad Sci:201418401. https://doi.org/10.1073/pnas.1418401112

  26. Keerthikumar S, Chisanga D, Ariyaratne D, al Saffar H, Anand S, Zhao K, Samuel M, Pathan M, Jois M, Chilamkurti N, Gangoda L, Mathivanan S (2016) ExoCarta: a web-based compendium of Exosomal cargo. J Mol Biol 428:688–692. https://doi.org/10.1016/j.jmb.2015.09.019

  27. Kim IS, Jenni S, Stanifer ML, Roth E, Whelan SP, van Oijen A, Harrison SC (2017) Mechanism of membrane fusion induced by vesicular stomatitis virus G protein. Proc Natl Acad Sci 114:E28–E36. https://doi.org/10.1073/pnas.1618883114

  28. Ko SY, Lee W, Kenny HA, Dang LH, Ellis LM, Jonasch E, Lengyel E, Naora H (2019) Cancer-derived small extracellular vesicles promote angiogenesis by heparin-bound, bevacizumab-insensitive VEGF, independent of vesicle uptake. Commun Biol 2:386. https://doi.org/10.1038/s42003-019-0609-x

  29. Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T (2010) Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem 285:17442–17452. https://doi.org/10.1074/jbc.M110.107821

  30. Larsson L-I, Holck S, Christensen IJ (2007) Prognostic role of syncytin expression in breast cancer. Hum Pathol 38:726–731. https://doi.org/10.1016/j.humpath.2006.10.018

  31. Le Blanc I, Luyet P-P, Pons V et al (2005) Endosome-to-cytosol transport of viral nucleocapsids. Nat Cell Biol 7:653–664. https://doi.org/10.1038/ncb1269

  32. Liu T, Zhang X, Gao S et al (2016) Exosomal long noncoding RNA CRNDE-h as a novel serum-based biomarker for diagnosis and prognosis of colorectal cancer. Oncotarget 7. https://doi.org/10.18632/oncotarget.13465

  33. Lu F, Wu S-H, Hung Y, Mou C-Y (2009) Size effect on cell uptake in well-suspended, uniform Mesoporous silica nanoparticles. Small 5:1408–1413. https://doi.org/10.1002/smll.200900005

  34. Mangeot P-E, Dollet S, Girard M, Ciancia C, Joly S, Peschanski M, Lotteau V (2011) Protein transfer into human cells by VSV-G-induced Nanovesicles. Mol Ther 19:1656–1666. https://doi.org/10.1038/mt.2011.138

  35. Margolis L, Sadovsky Y (2019) The biology of extracellular vesicles: the known unknowns. PLoS Biol 17:e3000363. https://doi.org/10.1371/journal.pbio.3000363

  36. Mi S, Lee X, Li X, Veldman GM, Finnerty H, Racie L, LaVallie E, Tang XY, Edouard P, Howes S, Keith JC Jr, McCoy J (2000) Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403:785–789. https://doi.org/10.1038/35001608

  37. Milo R, Jorgensen P, Moran U, Weber G, Springer M (2010) BioNumbers—the database of key numbers in molecular and cell biology. Nucleic Acids Res 38:D750–D753. https://doi.org/10.1093/nar/gkp889

  38. Mittelbrunn M, Gutiérrez-Vázquez C, Villarroya-Beltri C, González S, Sánchez-Cabo F, González MÁ, Bernad A, Sánchez-Madrid F (2011) Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun 2:282. https://doi.org/10.1038/ncomms1285

  39. Mizushima N (2007) Autophagy: process and function. Genes Dev 21:2861–2873. https://doi.org/10.1101/gad.1599207

  40. Montecalvo A, Larregina AT, Shufesky WJ, Stolz DB, Sullivan ML, Karlsson JM, Baty CJ, Gibson GA, Erdos G, Wang Z, Milosevic J, Tkacheva OA, Divito SJ, Jordan R, Lyons-Weiler J, Watkins SC, Morelli AE (2012) Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood 119:756–766. https://doi.org/10.1182/blood-2011-02-338004

  41. Mulcahy LA, Pink RC, Carter DRF (2014) Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles 3:1–14. https://doi.org/10.3402/jev.v3.24641

  42. Nakai W, Yoshida T, Diez D, Miyatake Y, Nishibu T, Imawaka N, Naruse K, Sadamura Y, Hanayama R (2016) A novel affinity-based method for the isolation of highly purified extracellular vesicles. Sci Rep 6:33935. https://doi.org/10.1038/srep33935

  43. Nanbo A, Kawanishi E, Yoshida R, Yoshiyama H (2013) Exosomes derived from Epstein-Barr virus-infected cells are internalized via Caveola-dependent endocytosis and promote phenotypic modulation in target cells. J Virol 87:10334–10347. https://doi.org/10.1128/JVI.01310-13

  44. Ohno SI, Takanashi M, Sudo K, Ueda S, Ishikawa A, Matsuyama N, Fujita K, Mizutani T, Ohgi T, Ochiya T, Gotoh N, Kuroda M (2013) Systemically injected exosomes targeted to EGFR deliver antitumor microrna to breast cancer cells. Mol Ther 21:185–191. https://doi.org/10.1038/mt.2012.180

  45. Parolini I, Federici C, Raggi C et al (2009) Microenvironmental pH is a key factor for exosome traffic in tumor cells. J Biol Chem 284:34211–34222. https://doi.org/10.1074/jbc.M109.041152

  46. Pegtel DM, Cosmopoulos K, Thorley-Lawson DA, van Eijndhoven M, Hopmans ES, Lindenberg JL, de Gruijl TD, Würdinger T, Middeldorp JM (2010) Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci 107:6328–6333. https://doi.org/10.1073/pnas.0914843107

  47. Perez-Vargas J, Amirache F, Boson B, Mialon C, Freitas N, Sureau C, Fusil F, Cosset FL (2019) Enveloped viruses distinct from HBV induce dissemination of hepatitis D virus in vivo. Nat Commun 10:2098. https://doi.org/10.1038/s41467-019-10117-z

  48. Prada I, Meldolesi J (2016) Binding and fusion of extracellular vesicles to the plasma membrane of their cell targets. Int J Mol Sci 17:1296. https://doi.org/10.3390/ijms17081296

  49. Ramshani Z, Zhang C, Richards K, Chen L, Xu G, Stiles BL, Hill R, Senapati S, Go DB, Chang HC (2019) Extracellular vesicle microRNA quantification from plasma using an integrated microfluidic device. Commun Biol 2:189. https://doi.org/10.1038/s42003-019-0435-1

  50. Raposo G, Stoorvogel W (2013) Extracellular vesicles: Exosomes, microvesicles, and friends. J Cell Biol 200:373–383. https://doi.org/10.1083/jcb.201211138

  51. Ratajczak J, Miekus K, Kucia M, Zhang J, Reca R, Dvorak P, Ratajczak MZ (2006) Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia 20:847–856. https://doi.org/10.1038/sj.leu.2404132

  52. Rodrigues M, Fan J, Lyon C, Wan M, Hu Y (2018) Role of extracellular vesicles in viral and bacterial infections: pathogenesis, diagnostics, and therapeutics. Theranostics 8:2709–2721. https://doi.org/10.7150/thno.20576

  53. Russell AE, Sneider A, Witwer KW et al (2019) Biological membranes in EV biogenesis, stability, uptake, and cargo transfer: an ISEV position paper arising from the ISEV membranes and EVs workshop. J Extracell Vesicles 8:1684862. https://doi.org/10.1080/20013078.2019.1684862

  54. Schageman J, Zeringer E, Li M et al (2013) The complete exosome workflow solution: from isolation to characterization of RNA cargo. Biomed Res Int 2013:1–15. https://doi.org/10.1155/2013/253957

  55. Shelke GV, Yin Y, Jang SC, Lässer C, Wennmalm S, Hoffmann HJ, Li L, Gho YS, Nilsson JA, Lötvall J (2019) Endosomal signalling via exosome surface TGFβ-1. J Extracell Vesicles 8:1650458. https://doi.org/10.1080/20013078.2019.1650458

  56. Shurtleff MJ, Temoche-Diaz MM, Karfilis KV et al (2016) Y-box protein 1 is required to sort microRNAs into exosomes in cells and in a cell-free reaction. eLife 5:1–23. https://doi.org/10.7554/eLife.19276

  57. Shurtleff MJ, Yao J, Qin Y, Nottingham RM, Temoche-Diaz MM, Schekman R, Lambowitz AM (2017) Broad role for YBX1 in defining the small noncoding RNA composition of exosomes. Proc Natl Acad Sci 114:E8987–E8995. https://doi.org/10.1073/pnas.1712108114

  58. Skehel JJ, Bayley PM, Brown EB, Martin SR, Waterfield MD, White JM, Wilson IA, Wiley DC (1982) Changes in the conformation of influenza virus hemagglutinin at the pH optimum of virus-mediated membrane fusion. Proc Natl Acad Sci 79:968–972. https://doi.org/10.1073/pnas.79.4.968

  59. Stegmann T, Schoen P, Bron R, Wey J, Bartoldus I, Ortiz A, Nieva JL, Wilschut J (1993) Evaluation of viral membrane fusion assays. Comparison of the octadecylrhodamine dequenching assay with the pyrene excimer assay. Biochemistry 32:11330–11337. https://doi.org/10.1021/bi00093a009

  60. Stein BS, Lifson D, Bensch KG, Engleman’t EG (1987) pH-independent HIV entry into CD4-positive T cells iia virus envelope fusion to the plasma membrane. Cell 49:659–668

  61. Stein KK, Primakoff P, Myles D (2004) Sperm-egg fusion: events at the plasma membrane. J Cell Sci 117:6269–6274. https://doi.org/10.1242/jcs.01598

  62. Sterzenbach U, Putz U, Low L-H et al (2017) Engineered exosomes as vehicles for biologically active proteins. Mol Ther 25:1–10. https://doi.org/10.1016/j.ymthe.2017.03.030

  63. Stremersch S, Vandenbroucke RE, Van Wonterghem E et al (2016) Comparing exosome-like vesicles with liposomes for the functional cellular delivery of small RNAs. J Control Release 232:51–61. https://doi.org/10.1016/j.jconrel.2016.04.005

  64. Sutaria DS, Jiang J, Elgamal OA, Pomeroy SM, Badawi M, Zhu X, Pavlovicz R, Azevedo-Pouly ACP, Chalmers J, Li C, Phelps MA, Schmittgen TD (2017) Low active loading of cargo into engineered extracellular vesicles results in inefficient miRNA mimic delivery. J Extracell Vesicles 6:1333882. https://doi.org/10.1080/20013078.2017.1333882

  65. Sverdlov ED (2012) Amedeo Avogadro’s cry: what is 1μg of exosomes? BioEssays 34:873–875. https://doi.org/10.1002/bies.201200045

  66. Takahashi A, Okada R, Nagao K, Kawamata Y, Hanyu A, Yoshimoto S, Takasugi M, Watanabe S, Kanemaki MT, Obuse C, Hara E (2017) Exosomes maintain cellular homeostasis by excreting harmful DNA from cells. Nat Commun 8:15287. https://doi.org/10.1038/ncomms15287

  67. Théry C, Regnault A, Garin J et al (1999) Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73. J Cell Biol 147:599–610

  68. Théry C, Boussac M, Véron P et al (2001) Proteomic analysis of dendritic cell-derived Exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J Immunol 166:7309–7318. https://doi.org/10.4049/jimmunol.166.12.7309

  69. Théry C, Witwer KW, Aikawa E et al (2018) Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 8:1535750. https://doi.org/10.1080/20013078.2018.1535750

  70. Tian T, Zhu Y-L, Zhou Y-Y, Liang GF, Wang YY, Hu FH, Xiao ZD (2014) Exosome uptake through Clathrin-mediated endocytosis and macropinocytosis and mediating miR-21 delivery. J Biol Chem 289:22258–22267. https://doi.org/10.1074/jbc.M114.588046

  71. Tokuyama M, Gunn BM, Venkataraman A et al (2019) Antibody against envelope protein from human endogenous retrovirus activates neutrophils in systemic lupus erythematosus. bioRxiv. https://doi.org/10.1101/776468

  72. Tosar JP, Cayota A, Eitan E et al (2017) Ribonucleic artefacts : are some extracellular RNA discoveries driven by cell culture medium components ? J Extracell Vesicles 6:1–10. https://doi.org/10.1080/20013078.2016.1272832

  73. Trikash I, Gumenyuk V, Lishko V (2010) The fusion of synaptic vesicle membranes studied by lipid mixing: the R18 fluorescence assay validity. Chem Phys Lipids 163:778–786. https://doi.org/10.1016/j.chemphyslip.2010.09.003

  74. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659. https://doi.org/10.1038/ncb1596

  75. Webber J, Clayton A (2013) How pure are your vesicles? J Extracell Vesicles 2:1–6. https://doi.org/10.3402/jev.v2i0.19861

  76. Wittrup A, Ai A, Liu X, Hamar P, Trifonova R, Charisse K, Manoharan M, Kirchhausen T, Lieberman J (2015) Visualizing lipid-formulated siRNA release from endosomes and target gene knockdown. Nat Biotechnol 33:870–876. https://doi.org/10.1038/nbt.3298

  77. Xiao D, Ohlendorf J, Chen Y, Taylor DD, Rai SN, Waigel S, Zacharias W, Hao H, McMasters K (2012) Identifying mRNA, MicroRNA and protein profiles of melanoma Exosomes. PLoS One 7:e46874. https://doi.org/10.1371/journal.pone.0046874

  78. Yim N, Ryu S-W, Choi K, Lee KR, Lee S, Choi H, Kim J, Shaker MR, Sun W, Park JH, Kim D, Heo WD, Choi C (2016) Exosome engineering for efficient intracellular delivery of soluble proteins using optically reversible protein–protein interaction module. Nat Commun 7:12277. https://doi.org/10.1038/ncomms12277

  79. Yokoi A, Yoshioka Y, Yamamoto Y, Ishikawa M, Ikeda SI, Kato T, Kiyono T, Takeshita F, Kajiyama H, Kikkawa F, Ochiya T (2017) Malignant extracellular vesicles carrying MMP1 mRNA facilitate peritoneal dissemination in ovarian cancer. Nat Commun 8:14470. https://doi.org/10.1038/ncomms14470

  80. Zhang Y, Liu D, Chen X et al (2010) Secreted Monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell 39:133–144. https://doi.org/10.1016/j.molcel.2010.06.010

  81. Zomer A, Maynard C, Verweij FJ, Kamermans A, Schäfer R, Beerling E, Schiffelers RM, de Wit E, Berenguer J, Ellenbroek SIJ, Wurdinger T, Pegtel DM, van Rheenen J (2015) In vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior. Cell 161:1046–1057. https://doi.org/10.1016/j.cell.2015.04.042

Download references

Acknowledgments

This work was supported by JSPS KAKENHI (Grant-in-Aid for Early-career Scientists no. 18 K18386) and a Research Grant from the JGC-S Scholarship Foundation.

Author information

Correspondence to Masaharu Somiya.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Somiya, M. Where does the cargo go?: Solutions to provide experimental support for the “extracellular vesicle cargo transfer hypothesis”. J. Cell Commun. Signal. (2020). https://doi.org/10.1007/s12079-020-00552-9

Download citation

Keywords

  • Exosome
  • Extracellular vesicle
  • Cargo
  • Delivery
  • Intercellular communication