Advertisement

Mitochondria: the indispensable players in innate immunity and guardians of the inflammatory response

  • Abhishek MohantyEmail author
  • Rashmi Tiwari-Pandey
  • Nihar R. PandeyEmail author
Review
  • 135 Downloads

Abstract

Mitochondria, the dynamic organelles and power house of eukaryotic cells function as metabolic hubs of cells undergoing continuous cycles of fusion and fission. Recent findings have made it increasingly apparent that mitochondria essentially involved in energy production have evolved as principal intracellular signaling platforms regulating not only innate immunity but also inflammatory responses. Perturbations in mitochondrial dynamics, including fusion/fission, electron transport chain (ETC) architecture and cristae organization have now been actively correlated to modulate metabolic activity and immune function of innate and adaptive immune cells. Several newly identified mitochondrial proteins in mitochondrial outer membrane such as mitochondrial antiviral signaling protein (MAVS) and with mitochondrial DNA acting as danger-associated molecular pattern (DAMP) and mitochondrial ROS generated from mitochondrial sources have potentially established mitochondria as key signaling platforms in antiviral immunity in vertebrates and thereby orchestrating adaptive immune cell activations respectively. A thorough understanding of emerging and intervening role of mitochondria in toll-like receptor-mediated innate immune responses and NLRP3 inflammasome complex activation has gained lucidity in recent years that advocates the imposing functions of mitochondria in innate immunity. Fascinatingly, also how the signals stemming from the endoplasmic reticulum co-operate with the mitochondria to activate the NLRP3 inflammasome is now looked ahead as a stage to unravel as to how different mitochondrial and associated organelle stress responses co-operate to bring about inflammatory consequences. This has also opened avenues of research for revealing mitochondrial targets that could be exploited for development of novel therapeutics to treat various infectious, inflammatory, and autoimmune disorders. Thus, this review explores our current understanding of intricate interplay between mitochondria and other cellular processes like autophagy in controlling mitochondrial homeostasis and regulation of innate immunity and inflammatory responses.

Keywords

Mitochondrial dynamics Mitophagy Inflammasome NLRP3 Innate immune response Inflammation 

Notes

Acknowledgements

Financial assistance from MVR Cancer Center and Research Institute, Kerala,India is highly acknowledged. Dr.Shilpa Dilipkumar is highly acknowledged for her contribution towards designing the illustrated figure.

Compliance with ethical standards

Conflict of interests

The authors have declared that no conflict of interests exists.

References

  1. Baixauli F, Acin-Perez R, Villarroya-Beltri C, Mazzeo C, Nunez-Andrade N, Gabande-Rodriguez E et al (2015) Mitochondrial respiration controls lysosomal function during inflammatory T cell responses. Cell Metab 22(3):485–498CrossRefPubMedPubMedCentralGoogle Scholar
  2. Belgnaoui SM, Paz S, Hiscott J (2011) Orchestrating the interferon antiviral response through the mitochondrial antiviral signaling (MAVS) adapter. Curr Opin Immunol 23(5):564–572CrossRefPubMedGoogle Scholar
  3. Bengsch B, Johnson AL, Kurachi M, Odorizzi PM, Pauken KE, Attanasio J, Stelekati E, McLane LM, Paley MA, Delgoffe GM, Wherry EJ (2016) Bioenergetic insufficiencies due to metabolic alterations regulated by the inhibitory receptor PD-1 are an early driver of CD8(+) T cell exhaustion. Immunity 45(2):358–373CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bento CF, Renna M, Ghislat G, Puri C, Ashkenazi A, Vicinanza M, Menzies FM, Rubinsztein DC (2016) Mammalian autophagy: how does it work? Annu Rev Biochem 85:685–713CrossRefPubMedGoogle Scholar
  5. Bronner DN, Abuaita BH, Chen X, Fitzgerald KA, Nunez G, He Y et al (2015) Endoplasmic reticulum stress activates the Inflammasome via NLRP3- and Caspase-2-driven mitochondrial damage. Immunity 43(3):451–462CrossRefPubMedPubMedCentralGoogle Scholar
  6. Brubaker SW, Bonham KS, Zanoni I, Kagan JC (2015) Innate immune pattern recognition: a cell biological perspective. Annu Rev Immunol 33:257–290CrossRefPubMedPubMedCentralGoogle Scholar
  7. Buck MD, O'Sullivan D, Klein Geltink RI, Curtis JD, Chang CH, Sanin DE et al (2016) Mitochondrial dynamics controls T cell fate through metabolic programming. Cell 166(1):63–76CrossRefPubMedPubMedCentralGoogle Scholar
  8. Buskiewicz IA, Montgomery T, Yasewicz EC, Huber SA, Murphy MP, Hartley RC et al (2016) Reactive oxygen species induce virus-independent MAVS oligomerization in systemic lupus erythematosus. Sci Signal 9(456):ra115CrossRefPubMedPubMedCentralGoogle Scholar
  9. Caielli S, Athale S, Domic B, Murat E, Chandra M, Banchereau R, Baisch J, Phelps K, Clayton S, Gong M, Wright T, Punaro M, Palucka K, Guiducci C, Banchereau J, Pascual V (2016) Oxidized mitochondrial nucleoids released by neutrophils drive type I interferon production in human lupus. J Exp Med 213(5):697–713CrossRefPubMedPubMedCentralGoogle Scholar
  10. Campos JC, Bozi LH, Bechara LR, Lima VM, Ferreira JC (2016) Mitochondrial quality control in cardiac diseases. Front Physiol 7:479CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cassidy-Stone A, Chipuk JE, Ingerman E, Song C, Yoo C, Kuwana T, Kurth MJ, Shaw JT, Hinshaw JE, Green DR, Nunnari J (2008) Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. Dev Cell 14(2):193–204CrossRefPubMedPubMedCentralGoogle Scholar
  12. Castanier C, Garcin D, Vazquez A, Arnoult D (2010) Mitochondrial dynamics regulate the RIG-I-like receptor antiviral pathway. EMBO Rep 11(2):133–138CrossRefPubMedGoogle Scholar
  13. Chan DC (2006) Mitochondrial fusion and fission in mammals. Annu Rev Cell Dev Biol 22:79–99CrossRefPubMedGoogle Scholar
  14. Chan YK, Gack MU (2016) A phosphomimetic-based mechanism of dengue virus to antagonize innate immunity. Nat Immunol 17(5):523–530CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chan NC, Salazar AM, Pham AH, Sweredoski MJ, Kolawa NJ, Graham RL et al (2011) Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum Mol Genet 20(9):1726–1737CrossRefPubMedPubMedCentralGoogle Scholar
  16. Chandel NS, Schumacker PT, Arch RH (2001) Reactive oxygen species are downstream products of TRAF-mediated signal transduction. J Biol Chem 276(46):42728–42736CrossRefPubMedGoogle Scholar
  17. Chaung WW, Wu R, Ji Y, Dong W, Wang P (2012) Mitochondrial transcription factor a is a proinflammatory mediator in hemorrhagic shock. Int J Mol Med 30(1):199–203PubMedPubMedCentralGoogle Scholar
  18. Chen Y, Dorn GW 2nd. (2013) PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science 340(6131):471–475CrossRefPubMedPubMedCentralGoogle Scholar
  19. Chen Q, Vazquez EJ, Moghaddas S, Hoppel CL, Lesnefsky EJ (2003) Production of reactive oxygen species by mitochondria: central role of complex III. J Biol Chem 278(38):36027–36031CrossRefPubMedGoogle Scholar
  20. Chen G, Han Z, Feng D, Chen Y, Chen L, Wu H, Huang L, Zhou C, Cai X, Fu C, Duan L, Wang X, Liu L, Liu X, Shen Y, Zhu Y, Chen Q (2014) A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy. Mol Cell 54(3):362–377CrossRefPubMedGoogle Scholar
  21. Chen M, Chen Z, Wang Y, Tan Z, Zhu C, Li Y, Han Z, Chen L, Gao R, Liu L, Chen Q (2016) Mitophagy receptor FUNDC1 regulates mitochondrial dynamics and mitophagy. Autophagy 12(4):689–702CrossRefPubMedPubMedCentralGoogle Scholar
  22. Cheng Z, Ristow M (2013) Mitochondria and metabolic homeostasis. Antioxid Redox Signal 19(3):240–242CrossRefPubMedGoogle Scholar
  23. Chinnery PF, Hudson G (2013) Mitochondrial genetics. Br Med Bull 106:135–159CrossRefPubMedPubMedCentralGoogle Scholar
  24. Chistiakov DA, Shkurat TP, Melnichenko AA, Grechko AV, Orekhov AN (2018) The role of mitochondrial dysfunction in cardiovascular disease: a brief review. Ann Med 50(2):121–127CrossRefPubMedGoogle Scholar
  25. Choi YB, Shembade N, Parvatiyar K, Balachandran S, Harhaj EW (2017) TAX1BP1 Restrains virus-induced apoptosis by facilitating itch-mediated degradation of the mitochondrial adaptor MAVS. Mol Cell Biol 37(1)Google Scholar
  26. Chu CT, Ji J, Dagda RK, Jiang JF, Tyurina YY, Kapralov AA, Tyurin VA, Yanamala N, Shrivastava IH, Mohammadyani D, Qiang Wang KZ, Zhu J, Klein-Seetharaman J, Balasubramanian K, Amoscato AA, Borisenko G, Huang Z, Gusdon AM, Cheikhi A, Steer EK, Wang R, Baty C, Watkins S, Bahar I, Bayır H, Kagan VE (2013) Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. Nat Cell Biol 15(10):1197–1205CrossRefPubMedPubMedCentralGoogle Scholar
  27. Collins LV, Hajizadeh S, Holme E, Jonsson IM, Tarkowski A (2004) Endogenously oxidized mitochondrial DNA induces in vivo and in vitro inflammatory responses. J Leukoc Biol 75(6):995–1000CrossRefPubMedGoogle Scholar
  28. Crawford A, Angelosanto JM, Kao C, Doering TA, Odorizzi PM, Barnett BE, Wherry EJ (2014) Molecular and transcriptional basis of CD4(+) T cell dysfunction during chronic infection. Immunity 40(2):289–302CrossRefPubMedPubMedCentralGoogle Scholar
  29. de Brito OM, Scorrano L (2008) Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456(7222):605–610CrossRefPubMedGoogle Scholar
  30. Detmer SA, Chan DC (2007) Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Biol 8(11):870–879CrossRefPubMedGoogle Scholar
  31. Dixit E, Boulant S, Zhang Y, Lee AS, Odendall C, Shum B et al (2010) Peroxisomes are signaling platforms for antiviral innate immunity. Cell 141(4):668–681CrossRefPubMedPubMedCentralGoogle Scholar
  32. El Maadidi S, Faletti L, Berg B, Wenzl C, Wieland K, Chen ZJ et al (2014) A novel mitochondrial MAVS/Caspase-8 platform links RNA virus-induced innate antiviral signaling to Bax/Bak-independent apoptosis. J Immunol 192(3):1171–1183CrossRefPubMedGoogle Scholar
  33. Elmore SP, Qian T, Grissom SF, Lemasters JJ (2001) The mitochondrial permeability transition initiates autophagy in rat hepatocytes. FASEB J 15(12):2286–2287CrossRefPubMedGoogle Scholar
  34. Escames G, Lopez LC, Garcia JA, Garcia-Corzo L, Ortiz F, Acuna-Castroviejo D (2012) Mitochondrial DNA and inflammatory diseases. Hum Genet 131(2):161–173CrossRefPubMedGoogle Scholar
  35. Fernandes-Alnemri T, Wu J, Yu JW, Datta P, Miller B, Jankowski W, Rosenberg S, Zhang J, Alnemri ES (2007) The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ 14(9):1590–1604CrossRefPubMedPubMedCentralGoogle Scholar
  36. Fivenson EM, Lautrup S, Sun N, Scheibye-Knudsen M, Stevnsner T, Nilsen H, Bohr VA, Fang EF (2017) Mitophagy in neurodegeneration and aging. Neurochem Int 109:202–209CrossRefPubMedPubMedCentralGoogle Scholar
  37. Franchi L, Eigenbrod T, Munoz-Planillo R, Nunez G (2009) The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol 10(3):241–247CrossRefPubMedPubMedCentralGoogle Scholar
  38. Frank M, Duvezin-Caubet S, Koob S, Occhipinti A, Jagasia R, Petcherski A, Ruonala MO, Priault M, Salin B, Reichert AS (2012) Mitophagy is triggered by mild oxidative stress in a mitochondrial fission dependent manner. Biochim Biophys Acta 1823(12):2297–2310CrossRefPubMedGoogle Scholar
  39. Fu M, St-Pierre P, Shankar J, Wang PT, Joshi B, Nabi IR (2013) Regulation of mitophagy by the Gp78 E3 ubiquitin ligase. Mol Biol Cell 24(8):1153–1162CrossRefPubMedPubMedCentralGoogle Scholar
  40. Gao J, Sang M, Zhang X, Zheng T, Pan J, Dai M, Zhou L, Yang S (2015) Miro1-mediated mitochondrial dysfunction under high nutrient stress is linked to NOD-like receptor 3 (NLRP3)-dependent inflammatory responses in rat pancreatic beta cells. Free Radic Biol Med 89:322–332CrossRefPubMedGoogle Scholar
  41. Garlanda C, Dinarello CA, Mantovani A (2013) The interleukin-1 family: back to the future. Immunity 39(6):1003–1018CrossRefPubMedPubMedCentralGoogle Scholar
  42. Gegg ME, Cooper JM, Chau KY, Rojo M, Schapira AH, Taanman JW (2010) Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Hum Mol Genet 19(24):4861–4870CrossRefPubMedPubMedCentralGoogle Scholar
  43. Geisler S, Holmstrom KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ et al (2010) PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 12(2):119–131CrossRefPubMedGoogle Scholar
  44. Gong G, Song M, Csordas G, Kelly DP, Matkovich SJ, Dorn GW 2nd. (2015) Parkin-mediated mitophagy directs perinatal cardiac metabolic maturation in mice. Science 350(6265):aad2459CrossRefPubMedPubMedCentralGoogle Scholar
  45. Gottlieb RA, Carreira RS (2010) Autophagy in health and disease. 5. Mitophagy as a way of life. Am J Physiol Cell Physiol 299(2):C203–C210CrossRefPubMedPubMedCentralGoogle Scholar
  46. Greene AW, Grenier K, Aguileta MA, Muise S, Farazifard R, Haque ME, McBride HM, Park DS, Fon EA (2012) Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment. EMBO Rep 13(4):378–385CrossRefPubMedPubMedCentralGoogle Scholar
  47. Gu Y, Kuida K, Tsutsui H, Ku G, Hsiao K, Fleming MA, Hayashi N, Higashino K, Okamura H, Nakanishi K, Kurimoto M, Tanimoto T, Flavell RA, Sato V, Harding MW, Livingston DJ, Su MS (1997) Activation of interferon-gamma inducing factor mediated by interleukin-1beta converting enzyme. Science 275(5297):206–209CrossRefPubMedGoogle Scholar
  48. Guo H, Callaway JB, Ting JP (2015) Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med 21(7):677–687CrossRefPubMedPubMedCentralGoogle Scholar
  49. Gustin A, Kirchmeyer M, Koncina E, Felten P, Losciuto S, Heurtaux T, Tardivel A, Heuschling P, Dostert C (2015) NLRP3 Inflammasome is expressed and functional in mouse brain microglia but not in astrocytes. PLoS One 10(6):e0130624CrossRefPubMedPubMedCentralGoogle Scholar
  50. Hall CJ, Boyle RH, Astin JW, Flores MV, Oehlers SH, Sanderson LE, Ellett F, Lieschke GJ, Crosier KE, Crosier PS (2013) Immunoresponsive gene 1 augments bactericidal activity of macrophage-lineage cells by regulating beta-oxidation-dependent mitochondrial ROS production. Cell Metab 18(2):265–278CrossRefPubMedGoogle Scholar
  51. Hamacher-Brady A, Brady NR, Gottlieb RA (2006) Enhancing macroautophagy protects against ischemia/reperfusion injury in cardiac myocytes. J Biol Chem 281(40):29776–29787CrossRefPubMedGoogle Scholar
  52. Haroon S, Vermulst M (2016) Linking mitochondrial dynamics to mitochondrial protein quality control. Curr Opin Genet Dev 38:68–74CrossRefPubMedGoogle Scholar
  53. Haschemi A, Kosma P, Gille L, Evans CR, Burant CF, Starkl P, Knapp B, Haas R, Schmid JA, Jandl C, Amir S, Lubec G, Park J, Esterbauer H, Bilban M, Brizuela L, Pospisilik JA, Otterbein LE, Wagner O (2012) The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism. Cell Metab 15(6):813–826CrossRefPubMedPubMedCentralGoogle Scholar
  54. Hasson SA, Kane LA, Yamano K, Huang CH, Sliter DA, Buehler E, Wang C, Heman-Ackah SM, Hessa T, Guha R, Martin SE, Youle RJ (2013) High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy. Nature 504(7479):291–295CrossRefPubMedPubMedCentralGoogle Scholar
  55. Heid ME, Keyel PA, Kamga C, Shiva S, Watkins SC, Salter RD (2013) Mitochondrial reactive oxygen species induces NLRP3-dependent lysosomal damage and inflammasome activation. J Immunol 191(10):5230–5238CrossRefPubMedGoogle Scholar
  56. Heinen A, Camara AK, Aldakkak M, Rhodes SS, Riess ML, Stowe DF (2007) Mitochondrial Ca2+−induced K+ influx increases respiration and enhances ROS production while maintaining membrane potential. Am J Physiol Cell Physiol 292(1):C148–C156CrossRefPubMedGoogle Scholar
  57. Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A et al (2013) NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice. Nature 493(7434):674–678CrossRefPubMedGoogle Scholar
  58. Ichimura H, Parthasarathi K, Quadri S, Issekutz AC, Bhattacharya J (2003) Mechano-oxidative coupling by mitochondria induces proinflammatory responses in lung venular capillaries. J Clin Invest 111(5):691–699CrossRefPubMedPubMedCentralGoogle Scholar
  59. Ichinohe T, Yamazaki T, Koshiba T, Yanagi Y (2013) Mitochondrial protein mitofusin 2 is required for NLRP3 inflammasome activation after RNA virus infection. Proc Natl Acad Sci U S A 110(44):17963–17968CrossRefPubMedPubMedCentralGoogle Scholar
  60. Ives A, Nomura J, Martinon F, Roger T, LeRoy D, Miner JN, Simon G, Busso N, So A (2015) Xanthine oxidoreductase regulates macrophage IL1beta secretion upon NLRP3 inflammasome activation. Nat Commun 6:6555CrossRefPubMedPubMedCentralGoogle Scholar
  61. Iyer SS, He Q, Janczy JR, Elliott EI, Zhong Z, Olivier AK, Sadler JJ, Knepper-Adrian V, Han R, Qiao L, Eisenbarth SC, Nauseef WM, Cassel SL, Sutterwala FS (2013) Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation. Immunity 39(2):311–323CrossRefPubMedPubMedCentralGoogle Scholar
  62. Jacobs JL, Zhu J, Sarkar SN, Coyne CB (2014) Regulation of mitochondrial antiviral signaling (MAVS) expression and signaling by the mitochondria-associated endoplasmic reticulum membrane (MAM) protein Gp78. J Biol Chem 289(3):1604–1616CrossRefPubMedGoogle Scholar
  63. Jenkins K, Khoo JJ, Sadler A, Piganis R, Wang D, Borg NA, Hjerrild K, Gould J, Thomas BJ, Nagley P, Hertzog PJ, Mansell A (2013) Mitochondrially localised MUL1 is a novel modulator of antiviral signaling. Immunol Cell Biol 91(4):321–330CrossRefPubMedGoogle Scholar
  64. Jha S, Srivastava SY, Brickey WJ, Iocca H, Toews A, Morrison JP, Chen VS, Gris D, Matsushima GK, Ting JPY (2010) The inflammasome sensor, NLRP3, regulates CNS inflammation and demyelination via caspase-1 and interleukin-18. J Neurosci 30(47):15811–15820CrossRefPubMedGoogle Scholar
  65. Jha AK, Huang SC, Sergushichev A, Lampropoulou V, Ivanova Y, Loginicheva E et al (2015) Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42(3):419–430CrossRefPubMedGoogle Scholar
  66. Jin SM, Lazarou M, Wang C, Kane LA, Narendra DP, Youle RJ (2010) Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J Cell Biol 191(5):933–942CrossRefPubMedPubMedCentralGoogle Scholar
  67. Jo EK, Kim JK, Shin DM, Sasakawa C (2016) Molecular mechanisms regulating NLRP3 inflammasome activation. Cell Mol Immunol 13(2):148–159CrossRefPubMedGoogle Scholar
  68. Kane LA, Lazarou M, Fogel AI, Li Y, Yamano K, Sarraf SA, Banerjee S, Youle RJ (2014) PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J Cell Biol 205(2):143–153CrossRefPubMedPubMedCentralGoogle Scholar
  69. Kawai T, Takahashi K, Sato S, Coban C, Kumar H, Kato H, Ishii KJ, Takeuchi O, Akira S (2005) IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol 6(10):981–988CrossRefPubMedGoogle Scholar
  70. Kelly B, Tannahill GM, Murphy MP, O'Neill LA (2015) Metformin inhibits the production of reactive oxygen species from NADH:ubiquinone oxidoreductase to limit induction of Interleukin-1beta (IL-1beta) and boosts Interleukin-10 (IL-10) in lipopolysaccharide (LPS)-activated macrophages. J Biol Chem 290(33):20348–20359CrossRefPubMedPubMedCentralGoogle Scholar
  71. Kim MJ, Bae SH, Ryu JC, Kwon Y, Oh JH, Kwon J, Moon JS, Kim K, Miyawaki A, Lee MG, Shin J, Kim YS, Kim CH, Ryter SW, Choi AMK, Rhee SG, Ryu JH, Yoon JH (2016a) SESN2/sestrin2 suppresses sepsis by inducing mitophagy and inhibiting NLRP3 activation in macrophages. Autophagy 12(8):1272–1291CrossRefPubMedPubMedCentralGoogle Scholar
  72. Kim MJ, Yoon JH, Ryu JH (2016b) Mitophagy: a balance regulator of NLRP3 inflammasome activation. BMB Rep 49(10):529–535CrossRefPubMedPubMedCentralGoogle Scholar
  73. Kirienko NV, Ausubel FM, Ruvkun G (2015) Mitophagy confers resistance to siderophore-mediated killing by Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 112(6):1821–1826CrossRefPubMedPubMedCentralGoogle Scholar
  74. Koentjoro B, Park JS, Sue CM (2017) Nix restores mitophagy and mitochondrial function to protect against PINK1/Parkin-related Parkinson's disease. Sci Rep 7:44373CrossRefPubMedPubMedCentralGoogle Scholar
  75. Koyano F, Okatsu K, Kosako H, Tamura Y, Go E, Kimura M, Kimura Y, Tsuchiya H, Yoshihara H, Hirokawa T, Endo T, Fon EA, Trempe JF, Saeki Y, Tanaka K, Matsuda N (2014) Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 510(7503):162–166CrossRefPubMedGoogle Scholar
  76. Krysko DV, Agostinis P, Krysko O, Garg AD, Bachert C, Lambrecht BN, Vandenabeele P (2011) Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation. Trends Immunol 32(4):157–164CrossRefPubMedGoogle Scholar
  77. Kurihara Y, Kanki T, Aoki Y, Hirota Y, Saigusa T, Uchiumi T, Kang D (2012) Mitophagy plays an essential role in reducing mitochondrial production of reactive oxygen species and mutation of mitochondrial DNA by maintaining mitochondrial quantity and quality in yeast. J Biol Chem 287(5):3265–3272CrossRefPubMedGoogle Scholar
  78. Lazarou M (2015) Keeping the immune system in check: a role for mitophagy. Immunol Cell Biol 93(1):3–10CrossRefPubMedGoogle Scholar
  79. Lazarou M, Narendra DP, Jin SM, Tekle E, Banerjee S, Youle RJ (2013) PINK1 drives Parkin self-association and HECT-like E3 activity upstream of mitochondrial binding. J Cell Biol 200(2):163–172CrossRefPubMedPubMedCentralGoogle Scholar
  80. Leemans JC, Cassel SL, Sutterwala FS (2011) Sensing damage by the NLRP3 inflammasome. Immunol Rev 243(1):152–162CrossRefPubMedPubMedCentralGoogle Scholar
  81. Lerner CA, Sundar IK, Rahman I (2016) Mitochondrial redox system, dynamics, and dysfunction in lung inflammaging and COPD. Int J Biochem Cell Biol 81(Pt B):294–306CrossRefPubMedPubMedCentralGoogle Scholar
  82. Li X, Fang P, Mai J, Choi ET, Wang H, Yang XF (2013) Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. J Hematol Oncol 6:19CrossRefPubMedPubMedCentralGoogle Scholar
  83. Liesa M, Shirihai OS (2016) Mitochondrial networking in T cell memory. Cell 166(1):9–10CrossRefPubMedGoogle Scholar
  84. Liu L, Feng D, Chen G, Chen M, Zheng Q, Song P, Ma Q, Zhu C, Wang R, Qi W, Huang L, Xue P, Li B, Wang X, Jin H, Wang J, Yang F, Liu P, Zhu Y, Sui S, Chen Q (2012) Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol 14(2):177–185CrossRefPubMedGoogle Scholar
  85. Liu S, Chen J, Cai X, Wu J, Chen X, Wu YT, Sun L, Chen ZJ (2013) MAVS recruits multiple ubiquitin E3 ligases to activate antiviral signaling cascades. elife 2:e00785CrossRefPubMedPubMedCentralGoogle Scholar
  86. Liu L, Sakakibara K, Chen Q, Okamoto K (2014) Receptor-mediated mitophagy in yeast and mammalian systems. Cell Res 24(7):787–795CrossRefPubMedPubMedCentralGoogle Scholar
  87. Maass DL, White J, Sanders B, Horton JW (2005) Role of cytosolic vs. mitochondrial Ca2+ accumulation in burn injury-related myocardial inflammation and function. Am J Physiol Heart Circ Physiol 288(2):H744–H751CrossRefPubMedGoogle Scholar
  88. Martinon F (2010) Signaling by ROS drives inflammasome activation. Eur J Immunol 40(3):616–619CrossRefPubMedGoogle Scholar
  89. Martinon F (2017) Inflammation initiated by stressed organelles. Joint Bone Spine 85(4):423–428Google Scholar
  90. Mehta MM, Weinberg SE, Chandel NS (2017) Mitochondrial control of immunity: beyond ATP. Nat Rev Immunol 17(10):608–620CrossRefPubMedGoogle Scholar
  91. Meissner C, Lorenz H, Weihofen A, Selkoe DJ, Lemberg MK (2011) The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking. J Neurochem 117(5):856–867CrossRefPubMedGoogle Scholar
  92. Menu P, Mayor A, Zhou R, Tardivel A, Ichijo H, Mori K, Tschopp J (2012) ER stress activates the NLRP3 inflammasome via an UPR-independent pathway. Cell Death Dis 3:e261CrossRefPubMedPubMedCentralGoogle Scholar
  93. Meylan E, Curran J, Hofmann K, Moradpour D, Binder M, Bartenschlager R, Tschopp J (2005) Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437(7062):1167–1172CrossRefPubMedGoogle Scholar
  94. Mills EL, Kelly B, Logan A, Costa AS, Varma M, Bryant CE et al (2016) Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell 167(2):457–470 e13CrossRefPubMedPubMedCentralGoogle Scholar
  95. Mills EL, Kelly B, O'Neill LAJ (2017) Mitochondria are the powerhouses of immunity. Nat Immunol 18(5):488–498CrossRefPubMedGoogle Scholar
  96. Misawa T, Takahama M, Kozaki T, Lee H, Zou J, Saitoh T, Akira S (2013) Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome. Nat Immunol 14(5):454–460CrossRefPubMedGoogle Scholar
  97. Mishra P, Carelli V, Manfredi G, Chan DC (2014) Proteolytic cleavage of Opa1 stimulates mitochondrial inner membrane fusion and couples fusion to oxidative phosphorylation. Cell Metab 19(4):630–641CrossRefPubMedPubMedCentralGoogle Scholar
  98. Moreira PI, Santos MS, Moreno A, Rego AC, Oliveira C (2002) Effect of amyloid beta-peptide on permeability transition pore: a comparative study. J Neurosci Res 69(2):257–267CrossRefPubMedGoogle Scholar
  99. Nakahira K, Haspel JA, Rathinam VA, Lee SJ, Dolinay T, Lam HC et al (2011) Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol 12(3):222–230CrossRefPubMedGoogle Scholar
  100. Narendra D, Tanaka A, Suen DF, Youle RJ (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183(5):795–803CrossRefPubMedPubMedCentralGoogle Scholar
  101. Narendra D, Kane LA, Hauser DN, Fearnley IM, Youle RJ (2010) p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both. Autophagy 6(8):1090–1106CrossRefPubMedPubMedCentralGoogle Scholar
  102. Nguyen MT, Satoh H, Favelyukis S, Babendure JL, Imamura T, Sbodio JI et al (2005) JNK and tumor necrosis factor-alpha mediate free fatty acid-induced insulin resistance in 3T3-L1 adipocytes. J Biol Chem 280(42):35361–35371CrossRefPubMedGoogle Scholar
  103. Novak I, Kirkin V, McEwan DG, Zhang J, Wild P, Rozenknop A et al (2010) Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep 11(1):45–51CrossRefPubMedGoogle Scholar
  104. Odendall C, Dixit E, Stavru F, Bierne H, Franz KM, Durbin AF, Boulant S, Gehrke L, Cossart P, Kagan JC (2014) Diverse intracellular pathogens activate type III interferon expression from peroxisomes. Nat Immunol 15(8):717–726CrossRefPubMedPubMedCentralGoogle Scholar
  105. Oka T, Hikoso S, Yamaguchi O, Taneike M, Takeda T, Tamai T, Oyabu J, Murakawa T, Nakayama H, Nishida K, Akira S, Yamamoto A, Komuro I, Otsu K (2012) Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature 485(7397):251–255CrossRefPubMedPubMedCentralGoogle Scholar
  106. Okamoto K, Kondo-Okamoto N (2012) Mitochondria and autophagy: critical interplay between the two homeostats. Biochim Biophys Acta 1820(5):595–600CrossRefPubMedGoogle Scholar
  107. Orvedahl A, Sumpter R Jr, Xiao G, Ng A, Zou Z, Tang Y et al (2011) Image-based genome-wide siRNA screen identifies selective autophagy factors. Nature 480(7375):113–117CrossRefPubMedPubMedCentralGoogle Scholar
  108. Oslowski CM, Hara T, O'Sullivan-Murphy B, Kanekura K, Lu S, Hara M, Ishigaki S, Zhu LJ, Hayashi E, Hui ST, Greiner D, Kaufman RJ, Bortell R, Urano F (2012) Thioredoxin-interacting protein mediates ER stress-induced beta cell death through initiation of the inflammasome. Cell Metab 16(2):265–273CrossRefPubMedPubMedCentralGoogle Scholar
  109. O'Sullivan TE, Johnson LR, Kang HH, Sun JC (2015) BNIP3- and BNIP3L-mediated Mitophagy promotes the generation of natural killer cell memory. Immunity 43(2):331–342CrossRefPubMedPubMedCentralGoogle Scholar
  110. Park S, Juliana C, Hong S, Datta P, Hwang I, Fernandes-Alnemri T, Yu JW, Alnemri ES (2013) The mitochondrial antiviral protein MAVS associates with NLRP3 and regulates its inflammasome activity. J Immunol 191(8):4358–4366CrossRefPubMedGoogle Scholar
  111. Park S, Won JH, Hwang I, Hong S, Lee HK, Yu JW (2015) Defective mitochondrial fission augments NLRP3 inflammasome activation. Sci Rep 5:15489CrossRefPubMedPubMedCentralGoogle Scholar
  112. Park JS, Koentjoro B, Sue CM (2017) Commentary: Nix restores mitophagy and mitochondrial function to protect against PINK1/Parkin-related Parkinson's disease. Front Mol Neurosci 10:297CrossRefPubMedPubMedCentralGoogle Scholar
  113. Pearce EL, Pearce EJ (2013) Metabolic pathways in immune cell activation and quiescence. Immunity 38(4):633–643CrossRefPubMedPubMedCentralGoogle Scholar
  114. Ploumi C, Daskalaki I, Tavernarakis N (2017) Mitochondrial biogenesis and clearance: a balancing act. FEBS J 284(2):183–195CrossRefPubMedGoogle Scholar
  115. Pospisilik JA, Knauf C, Joza N, Benit P, Orthofer M, Cani PD, Ebersberger I, Nakashima T, Sarao R, Neely G, Esterbauer H, Kozlov A, Kahn CR, Kroemer G, Rustin P, Burcelin R, Penninger JM (2007) Targeted deletion of AIF decreases mitochondrial oxidative phosphorylation and protects from obesity and diabetes. Cell 131(3):476–491CrossRefPubMedGoogle Scholar
  116. Richter B, Sliter DA, Herhaus L, Stolz A, Wang C, Beli P, Zaffagnini G, Wild P, Martens S, Wagner SA, Youle RJ, Dikic I (2016) Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria. Proc Natl Acad Sci U S A 113(15):4039–4044CrossRefPubMedPubMedCentralGoogle Scholar
  117. Rodgers MA, Bowman JW, Liang Q, Jung JU (2014) Regulation where autophagy intersects the inflammasome. Antioxid Redox Signal 20(3):495–506CrossRefPubMedPubMedCentralGoogle Scholar
  118. Ron-Harel N, Santos D, Ghergurovich JM, Sage PT, Reddy A, Lovitch SB, Dephoure N, Satterstrom FK, Sheffer M, Spinelli JB, Gygi S, Rabinowitz JD, Sharpe AH, Haigis MC (2016) Mitochondrial biogenesis and proteome remodeling promote one-carbon metabolism for T cell activation. Cell Metab 24(1):104–117CrossRefPubMedPubMedCentralGoogle Scholar
  119. Saha SK, Pietras EM, He JQ, Kang JR, Liu SY, Oganesyan G, Shahangian A, Zarnegar B, Shiba TL, Wang Y, Cheng G (2006) Regulation of antiviral responses by a direct and specific interaction between TRAF3 and Cardif. EMBO J 25(14):3257–3263CrossRefPubMedPubMedCentralGoogle Scholar
  120. Sala-Mercado JA, Wider J, Undyala VV, Jahania S, Yoo W, Mentzer RM Jr et al (2010) Profound cardioprotection with chloramphenicol succinate in the swine model of myocardial ischemia-reperfusion injury. Circulation 122(11 Suppl):S179–S184CrossRefPubMedPubMedCentralGoogle Scholar
  121. Sandhir R, Halder A, Sunkaria A (2017) Mitochondria as a centrally positioned hub in the innate immune response. Biochim Biophys Acta 1863(5):1090–1097CrossRefGoogle Scholar
  122. Sarraf SA, Raman M, Guarani-Pereira V, Sowa ME, Huttlin EL, Gygi SP, Harper JW (2013) Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature 496(7445):372–376CrossRefPubMedPubMedCentralGoogle Scholar
  123. Scharping NE, Menk AV, Moreci RS, Whetstone RD, Dadey RE, Watkins SC, Ferris RL, Delgoffe GM (2016) The tumor microenvironment represses T cell mitochondrial biogenesis to drive Intratumoral T cell metabolic insufficiency and dysfunction. Immunity 45(2):374–388CrossRefPubMedPubMedCentralGoogle Scholar
  124. Seth RB, Sun L, Ea CK, Chen ZJ (2005) Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122(5):669–682CrossRefPubMedGoogle Scholar
  125. Sha D, Chin LS, Li L (2010) Phosphorylation of parkin by Parkinson disease-linked kinase PINK1 activates parkin E3 ligase function and NF-kappaB signaling. Hum Mol Genet 19(2):352–363CrossRefPubMedGoogle Scholar
  126. Shen Z, Li Y, Gasparski AN, Abeliovich H, Greenberg ML (2017) Cardiolipin regulates Mitophagy through the protein kinase C pathway. J Biol Chem 292(7):2916–2923CrossRefPubMedPubMedCentralGoogle Scholar
  127. Shi CS, Shenderov K, Huang NN, Kabat J, Abu-Asab M, Fitzgerald KA, Sher A, Kehrl JH (2012) Activation of autophagy by inflammatory signals limits IL-1beta production by targeting ubiquitinated inflammasomes for destruction. Nat Immunol 13(3):255–263CrossRefPubMedPubMedCentralGoogle Scholar
  128. Shimada K, Crother TR, Karlin J, Dagvadorj J, Chiba N, Chen S, Ramanujan VK, Wolf AJ, Vergnes L, Ojcius DM, Rentsendorj A, Vargas M, Guerrero C, Wang Y, Fitzgerald KA, Underhill DM, Town T, Arditi M (2012) Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 36(3):401–414CrossRefPubMedPubMedCentralGoogle Scholar
  129. Song T, Wei C, Zheng Z, Xu Y, Cheng X, Yuan Y, Guan K, Zhang Y, Ma Q, Shi W, Zhong H (2010) c-Abl tyrosine kinase interacts with MAVS and regulates innate immune response. FEBS Lett 584(1):33–38CrossRefPubMedGoogle Scholar
  130. Stolz A, Ernst A, Dikic I (2014) Cargo recognition and trafficking in selective autophagy. Nat Cell Biol 16(6):495–501CrossRefPubMedGoogle Scholar
  131. Subramanian N, Natarajan K, Clatworthy MR, Wang Z, Germain RN (2013) The adaptor MAVS promotes NLRP3 mitochondrial localization and inflammasome activation. Cell 153(2):348–361CrossRefPubMedPubMedCentralGoogle Scholar
  132. Sukumar M, Liu J, Mehta GU, Patel SJ, Roychoudhuri R, Crompton JG, Klebanoff CA, Ji Y, Li P, Yu Z, Whitehill GD, Clever D, Eil RL, Palmer DC, Mitra S, Rao M, Keyvanfar K, Schrump DS, Wang E, Marincola FM, Gattinoni L, Leonard WJ, Muranski P, Finkel T, Restifo NP (2016) Mitochondrial membrane potential identifies cells with enhanced Stemness for cellular therapy. Cell Metab 23(1):63–76CrossRefPubMedGoogle Scholar
  133. Sun S, Sursal T, Adibnia Y, Zhao C, Zheng Y, Li H, Otterbein LE, Hauser CJ, Itagaki K (2013) Mitochondrial DAMPs increase endothelial permeability through neutrophil dependent and independent pathways. PLoS One 8(3):e59989CrossRefPubMedPubMedCentralGoogle Scholar
  134. Sun L, Shen R, Agnihotri SK, Chen Y, Huang Z, Bueler H (2018) Lack of PINK1 alters glia innate immune responses and enhances inflammation-induced, nitric oxide-mediated neuron death. Sci Rep 8(1):383CrossRefPubMedPubMedCentralGoogle Scholar
  135. Szczesny B, Marcatti M, Ahmad A, Montalbano M, Brunyanszki A, Bibli SI et al (2018) Mitochondrial DNA damage and subsequent activation of Z-DNA binding protein 1 links oxidative stress to inflammation in epithelial cells. Sci Rep 8(1):914CrossRefPubMedPubMedCentralGoogle Scholar
  136. Tal MC, Iwasaki A (2011) Mitoxosome: a mitochondrial platform for cross-talk between cellular stress and antiviral signaling. Immunol Rev 243(1):215–234CrossRefPubMedPubMedCentralGoogle Scholar
  137. Tal MC, Sasai M, Lee HK, Yordy B, Shadel GS, Iwasaki A (2009) Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling. Proc Natl Acad Sci U S A 106(8):2770–2775CrossRefPubMedPubMedCentralGoogle Scholar
  138. Taylor RW, Chinnery PF, Turnbull DM, Lightowlers RN (1997) Selective inhibition of mutant human mitochondrial DNA replication in vitro by peptide nucleic acids. Nat Genet 15(2):212–215CrossRefPubMedGoogle Scholar
  139. Thornberry NA, Bull HG, Calaycay JR, Chapman KT, Howard AD, Kostura MJ, Miller DK, Molineaux SM, Weidner JR, Aunins J, Elliston KO, Ayala JM, Casano FJ, Chin J, Ding GJF, Egger LA, Gaffney EP, Limjuco G, Palyha OC, Raju SM, Rolando AM, Salley JP, Yamin TT, Lee TD, Shively JE, MacCross M, Mumford RA, Schmidt JA, Tocci MJ (1992) A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 356(6372):768–774CrossRefPubMedGoogle Scholar
  140. Tschopp J, Schroder K (2010) NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production? Nat Rev Immunol 10(3):210–215CrossRefPubMedGoogle Scholar
  141. Van den Bossche J, Baardman J, Otto NA, van der Velden S, Neele AE, van den Berg SM et al (2016) Mitochondrial dysfunction prevents repolarization of inflammatory macrophages. Cell Rep 17(3):684–696CrossRefPubMedGoogle Scholar
  142. Vasquez-Trincado C, Garcia-Carvajal I, Pennanen C, Parra V, Hill JA, Rothermel BA et al (2016) Mitochondrial dynamics, mitophagy and cardiovascular disease. J Physiol 594(3):509–525CrossRefPubMedPubMedCentralGoogle Scholar
  143. Wang Y, Tong X, Ye X (2012a) Ndfip1 negatively regulates RIG-I-dependent immune signaling by enhancing E3 ligase Smurf1-mediated MAVS degradation. J Immunol 189(11):5304–5313CrossRefPubMedGoogle Scholar
  144. Wang D, Wang J, Bonamy GM, Meeusen S, Brusch RG, Turk C et al (2012b) A small molecule promotes mitochondrial fusion in mammalian cells. Angew Chem 51(37):9302–9305CrossRefGoogle Scholar
  145. Wang S, Xia P, Huang G, Zhu P, Liu J, Ye B, du Y, Fan Z (2016) FoxO1-mediated autophagy is required for NK cell development and innate immunity. Nat Commun 7:11023CrossRefPubMedPubMedCentralGoogle Scholar
  146. Watson RO, Manzanillo PS, Cox JS (2012) Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway. Cell 150(4):803–815CrossRefPubMedPubMedCentralGoogle Scholar
  147. Wei Y, Chiang WC, Sumpter R Jr, Mishra P, Levine B (2017) Prohibitin 2 is an inner mitochondrial membrane Mitophagy receptor. Cell 168(1–2):224–238 e10CrossRefPubMedGoogle Scholar
  148. Weinberg SE, Sena LA, Chandel NS (2015) Mitochondria in the regulation of innate and adaptive immunity. Immunity 42(3):406–417CrossRefPubMedPubMedCentralGoogle Scholar
  149. West AP, Brodsky IE, Rahner C, Woo DK, Erdjument-Bromage H, Tempst P, Walsh MC, Choi Y, Shadel GS, Ghosh S (2011) TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472(7344):476–480CrossRefPubMedPubMedCentralGoogle Scholar
  150. West AP, Khoury-Hanold W, Staron M, Tal MC, Pineda CM, Lang SM, Bestwick M, Duguay BA, Raimundo N, MacDuff DA, Kaech SM, Smiley JR, Means RE, Iwasaki A, Shadel GS (2015) Mitochondrial DNA stress primes the antiviral innate immune response. Nature 520(7548):553–557CrossRefPubMedPubMedCentralGoogle Scholar
  151. Wherry EJ, Kurachi M (2015) Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol 15(8):486–499CrossRefPubMedPubMedCentralGoogle Scholar
  152. Wiens KE, Ernst JD (2016) The mechanism for type I interferon induction by mycobacterium tuberculosis is bacterial strain-dependent. PLoS Pathog 12(8):e1005809CrossRefPubMedPubMedCentralGoogle Scholar
  153. Wilson KP, Black JA, Thomson JA, Kim EE, Griffith JP, Navia MA et al (1994) Structure and mechanism of interleukin-1 beta converting enzyme. Nature 370(6487):270–275CrossRefPubMedGoogle Scholar
  154. Won JH, Park S, Hong S, Son S, Yu JW (2015) Rotenone-induced impairment of mitochondrial Electron transport chain confers a selective priming signal for NLRP3 Inflammasome activation. J Biol Chem 290(45):27425–27437CrossRefPubMedPubMedCentralGoogle Scholar
  155. Woyda-Ploszczyca A, Jarmuszkiewicz W (2008) Uncoupling proteins in modulation of mitochondrial functions--therapeutic prospects. Postepy Biochem 54(2):188–197PubMedGoogle Scholar
  156. Xu LG, Wang YY, Han KJ, Li LY, Zhai Z, Shu HB (2005) VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol Cell 19(6):727–740CrossRefPubMedGoogle Scholar
  157. Yasukawa K, Oshiumi H, Takeda M, Ishihara N, Yanagi Y, Seya T et al (2009) Mitofusin 2 inhibits mitochondrial antiviral signaling. Sci Signal 2(84):ra47CrossRefPubMedGoogle Scholar
  158. Yazlovitskaya EM, Edwards E, Thotala D, Fu A, Osusky KL, Whetsell WO Jr et al (2006) Lithium treatment prevents neurocognitive deficit resulting from cranial irradiation. Cancer Res 66(23):11179–11186CrossRefPubMedGoogle Scholar
  159. Yogalingam G, Hwang S, Ferreira JC, Mochly-Rosen D (2013) Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) phosphorylation by protein kinase Cdelta (PKCdelta) inhibits mitochondria elimination by lysosomal-like structures following ischemia and reoxygenation-induced injury. J Biol Chem 288(26):18947–18960CrossRefPubMedPubMedCentralGoogle Scholar
  160. Yoo YS, Park YY, Kim JH, Cho H, Kim SH, Lee HS, Kim TH, Sun Kim Y, Lee Y, Kim CJ, Jung JU, Lee JS, Cho H (2015) The mitochondrial ubiquitin ligase MARCH5 resolves MAVS aggregates during antiviral signalling. Nat Commun 6:7910CrossRefPubMedPubMedCentralGoogle Scholar
  161. Youle RJ, van der Bliek AM (2012) Mitochondrial fission, fusion, and stress. Science 337(6098):1062–1065CrossRefPubMedPubMedCentralGoogle Scholar
  162. Yu T, Robotham JL, Yoon Y (2006) Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proc Natl Acad Sci U S A 103(8):2653–2658CrossRefPubMedPubMedCentralGoogle Scholar
  163. Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, Gonzalez FJ, Semenza GL (2008) Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 283(16):10892–10903CrossRefPubMedPubMedCentralGoogle Scholar
  164. Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, Brohi K, Itagaki K, Hauser CJ (2010) Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464(7285):104–107CrossRefPubMedPubMedCentralGoogle Scholar
  165. Zhou R, Yazdi AS, Menu P, Tschopp J (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature 469(7329):221–225CrossRefPubMedGoogle Scholar
  166. Zhou Z, Jia X, Xue Q, Dou Z, Ma Y, Zhao Z, Jiang Z, He B, Jin Q, Wang J (2014) TRIM14 is a mitochondrial adaptor that facilitates retinoic acid-inducible gene-I-like receptor-mediated innate immune response. Proc Natl Acad Sci U S A 111(2):E245–E254CrossRefPubMedGoogle Scholar
  167. Zhou Y, Lu M, Du RH, Qiao C, Jiang CY, Zhang KZ et al (2016) MicroRNA-7 targets nod-like receptor protein 3 inflammasome to modulate neuroinflammation in the pathogenesis of Parkinson's disease. Mol Neurodegener 11:28CrossRefPubMedPubMedCentralGoogle Scholar
  168. Zhu Y, Massen S, Terenzio M, Lang V, Chen-Lindner S, Eils R, Novak I, Dikic I, Hamacher-Brady A, Brady NR (2013) Modulation of serines 17 and 24 in the LC3-interacting region of Bnip3 determines pro-survival mitophagy versus apoptosis. J Biol Chem 288(2):1099–1113CrossRefPubMedGoogle Scholar
  169. Ziviani E, Tao RN, Whitworth AJ (2010) Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. Proc Natl Acad Sci U S A 107(11):5018–5023CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The International CCN Society 2019

Authors and Affiliations

  1. 1.MVR Cancer Center and Research InstituteCalicutIndia
  2. 2.CliniCan Health ResearchSurreyCanada
  3. 3.Medipure Pharmaceuticals IncNorth VancouverCanada

Personalised recommendations