Aberrant Wnt Signaling Pathway in the Hematopoietic Stem/Progenitor Compartment in Experimental Leukemic Animal

  • Sukalpa Chattopadhyay
  • Malay Chaklader
  • Sujata LawEmail author
Research Article


The evolutionarily conserved Wnt signaling pathway regulates physiological hematopoiesis, a process of formation of blood cells and has been shown to play crucial role in the development of both myeloid and lymphoid malignancies. The Wnt signaling pathway can be broadly divided into canonical and non-canonical pathways. In the present study, we investigated the pathobiology of leukemia by studying the expression profile of Wnt proteins, receptors, key signaling intermediates and endogenous Wnt antagonist involved in canonical and non-canonical pathways in the bone marrow (BM) hematopoietic stem/progenitor cell (HSPC) compartment of experimental leukemic mice. Cell adhesion molecule N-Cadherin and leukemic BM microenvironment with reference to Wnt were also studied. We used ENU, a potent carcinogen, to induce leukemia in wild type Swiss albino mice and malignant transformation was cofirmed by peripheral blood and BM studies. Flow cytometric expression analysis revealed profound up-regulation of canonical Wnt3a/β-catenin/CyclinD1 signaling axis along with N-Cadherin whereas down-regulation of non-canonical Wnt5a/Ca2+/CaMKII signaling axis in the leukemic HSPC compartment. Subsequent use of anti-Wnt3a antibody in the in vitro clonogenicity assay uncovered that anti-Wnt3a antibody preferentially inhibited the growth and number of the primitive leukemic hematopoietic CFU-GEMM and BFU-E colonies. Stromal cells derived from the leukemic BM also exhibited aberrant Wnt3a and Wnt5a protein expression. Taken together, alteration of canonical and non-canonical Wnt signaling pathways in the HSPC compartment along with classical Wnt protein expression pattern in the leukemic stromal microenvironment resulted in progression of leukemia.


ENU Leukemia N-Cadherin Wnt signaling Wnt3a Wnt5a 



Bone marrow


Hematopoietic stem/progenitor cell












Colony-forming unit of granulocyte/erythrocyte/macrophage/megakaryocyte


Burst-forming unit of erythroid cells


Colony-forming unit of granulocyte/macrophage


Colony-forming unit of granulocyte


Colony-forming unit of erythroid cells



Authors are thankful to the Director, Calcutta School of Tropical Medicine for supporting the work. We are also thankful to Leica Microsystem and Dept. of Biological Sciences, Presidency University for providing facilities of confocal microscope.


This work was supported by the INSPIRE Fellowship, Dept. of Science and Technology, Govt. of India [Fellowship Number: DST/INSPIRE Fellowship/2013/283(IF130354)]; and the Council for Scientific and Industrial Research (CSIR), Govt. of India [Grant Number: No. 37(1429)/10/EMRII].

Compliance with ethical standards

Conflict of Interest

Authors unanimously declare no potential conflict of interest.


  1. Anthony BA, Link DC (2014) Regulation of hematopoietic stem cells by bone marrow stromal cells. Trends Immunol 35(1):32–37. PubMedCrossRefGoogle Scholar
  2. Askmyr M, Quach J, Purton LE (2011) Effects of the bone marrow microenvironment on hematopoietic malignancy. Bone 48(1):115–120. PubMedCrossRefGoogle Scholar
  3. Bakker ERM, Das AM, Helvensteijn W, Franken PF, Swagemakers S, van der Valk MA, ten Hagen TL, Kuipers EJ, van Veelen W, Smits R (2013) Wnt5a promotes human colon cancer cell migration and invasion but does not augment intestinal tumorigenesis in Apc1638N mice. Carcinogenesis 34(11):2629–2638. PubMedCrossRefGoogle Scholar
  4. Basak P, Chatterjee S, Das P, Das M, Pereira JA, Dutta RK, Chaklader M, Chaudhuri S, Law S (2010) Leukemic stromal hematopoietic microenvironment negatively regulates the normal hematopoiesis in mouse model of leukemia. Chin J Cancer 29(12):969–979. PubMedCrossRefGoogle Scholar
  5. Bellon M, Ko NL, Lee MJ, Yao Y, Waldmann TA, Trepel JB, Nicot C (2013) Adult T-cell leukemia cells overexpress Wnt5a and promote osteoclast differentiation. Blood 121(25):5045–5054. PubMedCrossRefPubMedCentralGoogle Scholar
  6. Bigas A, Guiu J, Gama-Norton L (2013) Notch and Wnt signaling in the emergence of hematopoietic stem cells. Blood Cells Mol Dis 51(4):264–270. PubMedCrossRefGoogle Scholar
  7. Bordonaro M, Tewari S, Cicco CE, Atamna W, Lazarova DL (2011) A Switch from Canonical to Noncanonical Wnt Signaling Mediates Drug Resistance in Colon Cancer Cells. PLoS One 6(11):e27308. PubMedCrossRefPubMedCentralGoogle Scholar
  8. Brenner AK, Nepstad I, Bruserud Ø (2017) Mesenchymal stem cells support survival and proliferation of primary human acute myeloid leukemia cells through heterogeneous molecular mechanisms. Front Immunol 8:106. PubMedCrossRefPubMedCentralGoogle Scholar
  9. Chaklader M, Law S (2015) Alteration of hedgehog signaling by chronic exposure to different pesticide formulations and unveiling the regenerative potential of recombinant sonic hedgehog in mouse model of bone marrow aplasia. Mol Cell Biochem 401:115. PubMedCrossRefGoogle Scholar
  10. Chaklader M, Pan A, Law A, Chattopadhayay S, Chatterjee R, Law S (2013) Differential remodeling of cadherins and intermediate cytoskeletal filaments influence microenvironment of solid and ascitic sarcoma. Mol Cell Biochem 382:293–306. PubMedCrossRefGoogle Scholar
  11. Chatterjee S, Basak P, Das M, Das P, Pereira JA, Dutta RK, Chaklader M, Chaudhuri S, Law S (2009) Kinetic impairment of haemopoietic stem cells in experimentally induced leukemia and aplastic anemia: an inverse correlation. J Stem Cells 4(3):179–189PubMedGoogle Scholar
  12. Chatterjee R, Chattopadhyay S, Law S (2016a) Alteration of classical and hematopoiesis specific p53 pathway in the bone marrow hematopoietic stem/progenitor compartment facilitates leukemia progression in experimental mice. Leuk Res 47:70–77. PubMedCrossRefGoogle Scholar
  13. Chatterjee R, Chattopadhyay S, Sanyal S, Daw S, Law S (2016b) Pathophysiological scenario of hematopoietic disorders: a comparative study of aplastic anemia, myelodysplastic syndrome and leukemia in experimental animals. Proc Zool Soc 69(1):114–124. CrossRefGoogle Scholar
  14. Chatterjee R, Chattopadhyay S, Law S (2016c) Deregulation of vital mitotic kinase–phosphatase signaling in hematopoietic stem/progenitor compartment leads to cellular catastrophe in experimental aplastic anemia. Mol Cell Biochem 422(1–2):121–134. PubMedCrossRefGoogle Scholar
  15. Chattopadhyay S, Chatterjee R, Law S (2016a) Noncanonical Wnt5a-Ca(2+)-NFAT signaling axis in pesticide induced bone marrow aplasia mouse model: A study to explore the novel mechanism of pesticide toxicity. Environ Toxicol 31(10):1163–1175. PubMedCrossRefGoogle Scholar
  16. Chattopadhyay S, Chaklader M, Chatterjee R, Law A, Law S (2016b) Differential expression of mitotic regulators and tumor microenvironment influences the regional growth pattern of solid sarcoma along the cranio-caudal axis. Exp Cell Res 340(1):91–101. PubMedCrossRefGoogle Scholar
  17. Daw S, Chatterjee R, Law A, Law S (2016) Analysis of hematopathology and alteration of JAK1/STAT3/STAT5 signaling axis in experimental myelodysplastic syndrome. Chem Biol Interact 260:176–185. PubMedCrossRefGoogle Scholar
  18. De A (2011) Wnt/Ca2+ signaling pathway: a brief overview. Acta Biochim Biophys Sin 43(10):745–756. PubMedCrossRefGoogle Scholar
  19. Fleming HE, Janzen V, Celso CL, Guo J, Leahy KM, Kronenberg HM, Scadden DT (2008) Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo. Cell Stem Cell 2(3):274–283PubMedCrossRefGoogle Scholar
  20. Florian MC, Nattamai KJ, Dörr K, Marka G, Uberle B, Vas V, Eckl C, Andrä I, Schiemann M, Oostendorp RA, Scharffetter-Kochanek K, Kestler HA, Zheng Y, Geiger H (2013) A canonical to non-canonical Wnt signalling switch in haematopoietic stem-cell ageing. Nature 503(7476):392–396. PubMedCrossRefPubMedCentralGoogle Scholar
  21. Greim H, Kaden DA, Larson RA, Palermo CM, Rice JM, Ross D, Snyder R (2014) The bone marrow niche, stem cells, and leukemia: impact of drugs, chemicals, and the environment. Ann N Y Acad Sci 1310(1): 7–31.
  22. Guo ZY, Hao XH, Tan FF, Pei X, Shang LM, Jiang XL, Yang F (2011) The elements of human cyclin D1 promoter and regulation involved. Clin Epigenetics 2(2):63–76. PubMedCrossRefPubMedCentralGoogle Scholar
  23. Ishitani T, Kishida S, Hyodo-Miura J, Ueno N, Yasuda J, Waterman M, Shibuya H, Moon RT, Ninomiya-Tsuji J, Matsumoto K (2003) The TAK1-NLK mitogen-activated protein kinase cascade functions in the Wnt-5a/Ca(2+) pathway to antagonize Wnt/beta-catenin signaling. Mol Cell Biol 23:131–139. PubMedCrossRefPubMedCentralGoogle Scholar
  24. Kim AD, Stachura DL, Traver D (2014) Cell signaling pathways involved in hematopoietic stem cell specification. Exp Cell Res 329(2):227–233. PubMedCrossRefPubMedCentralGoogle Scholar
  25. Law S, Maiti D, Palit A, Majumder D, Basu K, Chaudhuri S, Chaudhuri S (2001) Facilitation of functional compartmentalization of bone marrow cells in leukemic mice by biological response modifiers: an immunotherapeutic approach. Immunol Lett 76(3):145–152PubMedCrossRefGoogle Scholar
  26. Lento W, Congdon K, Voermans C, Kritzik M, Reya T (2013) Wnt Signaling in Normal and Malignant Hematopoiesis. Cold Spring Harb Perspect Biol 5(2):a008011. PubMedCrossRefPubMedCentralGoogle Scholar
  27. Liang H, Chen Q, Coles AH, Anderson SJ, Pihan G, Bradley A, Gerstein R, Jurecic R, Jones SN (2003) Wnt5a inhibits B cell proliferation and functions as a tumor suppressor in hematopoietic tissue. Cancer Cell 4(5):349–360PubMedCrossRefGoogle Scholar
  28. Liu N, Shi HG, Zhang W, Gu B (2016) The crosstalk between canonical and noncanonical Wnt signaling pathway in osteoblast differentiation of periodontal ligament stem cells in inflammatory microenvironments. Zhonghua Kou Qiang Yi Xue Za Zhi 51(11):673–679. PubMedCrossRefGoogle Scholar
  29. Luis TC, Ichii M, Brugman MH, Kincade P, Staal FJ (2012) Wnt signaling strength regulates normal hematopoiesis and its deregulation is involved in leukemia development. Leukemia 26:414–421. PubMedCrossRefGoogle Scholar
  30. Many AM, Brown AMC (2014) Both Canonical and Non-Canonical Wnt Signaling Independently Promote Stem Cell Growth in Mammospheres. PLoS One 9(7):e101800. PubMedCrossRefPubMedCentralGoogle Scholar
  31. Martín V, Valencia A, Agirre X, Cervera J, San Jose-Eneriz E, Vilas-Zornoza A, Rodriguez-Otero P, Sanz MA, Herrera C, Torres A, Prosper F, Román-Gómez J (2010) Epigenetic regulation of the non-canonical Wnt pathway in acute myeloid leukemia. Cancer Sci 101(2):425–432. PubMedCrossRefGoogle Scholar
  32. Mikels AJ, Nusse R (2006) Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS Biol 4:e115. PubMedCrossRefPubMedCentralGoogle Scholar
  33. Mikels A, Minami Y, Nusse R (2009) Ror2 Receptor Requires Tyrosine Kinase Activity to Mediate Wnt5A Signaling. J Biol Chem 284(44):30167–30176. PubMedCrossRefPubMedCentralGoogle Scholar
  34. Minami Y, Oishi I, Endo M, Nishita M (2010) Ror-family receptor tyrosine kinases in noncanonical Wnt signaling: their implications in developmental morphogenesis and human diseases. Dev Dyn 239(1):1–15. PubMedCrossRefGoogle Scholar
  35. Ng OH, Firtina S, Can I, Karakaş Z, Ağaoğlu L, Doğru Ö, Celkan T, Akçay A, Yıldırmak Y, Timur Ç, Özbek U, Sayitoğlu M (2015) A Possible Role for WNT5A Hypermethylation in Pediatric Acute Lymphoblastic Leukemia. Turk J Haematol 32(2):127–135. CrossRefGoogle Scholar
  36. Pawar RD, Cui W, Lin TL, Aljitawi OS (2015) N-Cadherin Immunoexpression In Patients With Acute Myeloid Leukemia. Blood 126:4944Google Scholar
  37. Pereira JA, Law S (2018) Microenvironmental scenario of the bone marrow of inorganic arsenic-Exposed experimental mice. Biol Trace Elem Res 181(2):304–313. PubMedCrossRefGoogle Scholar
  38. Pinzón-Daza ML, Salaroglio IC, Kopecka J, Garzòn R, Couraud PO, Ghigo D, Riganti C (2014) The cross-talk between canonical and non-canonical Wnt-dependent pathways regulates P-glycoprotein expression in human blood-brain barrier cells. J Cereb Blood Flow Metab 34(8):1258–1269. PubMedCrossRefPubMedCentralGoogle Scholar
  39. Polakis P (2012) Wnt Signaling in Cancer. Cold Spring Harb Perspect Biol 4(5):a008052. PubMedCrossRefPubMedCentralGoogle Scholar
  40. Qiu S, Jia Y, Xing H, Yu T, Yu J, Yu P, Tang K, Tian Z, Wang H, Mi Y, Rao Q, Wang M, Wang J (2014) N-Cadherin and Tie2 positive CD34+ CD38−CD123+ leukemic stem cell populations can develop acute myeloid leukemia more effectively in NOD/SCID mice. Leuk Res 38(5):632–637. PubMedCrossRefGoogle Scholar
  41. Ramakrishnan A, Torok-Storb B, Pillai MM (2013) Primary marrow-derived stromal cells: isolation and manipulation. In: Stem Cell Niche. Humana Press, Totowa, NJ, pp 75–101CrossRefGoogle Scholar
  42. Richter J, Traver D, Willert K (2017) The role of Wnt signaling in hematopoietic stem cell development. Crit Rev Biochem Mol Biol 52(4):414–424. PubMedCrossRefPubMedCentralGoogle Scholar
  43. Schaniel C, Sirabella D, Qiu J, Niu X, Lemischka IR, Moore KA (2011) Wnt inhibitory factor 1 dysregulation of the bone marrow niche exhausts hematopoietic stem cells. Blood 118(9):2420–2429PubMedCrossRefGoogle Scholar
  44. Schreck C, Bock F, Grziwok S, Oostendorp RA, Istvánffy R (2014) Regulation of hematopoiesis by activators and inhibitors of Wnt signaling from the niche. Ann N Y Acad Sci 1310:32–43. PubMedCrossRefGoogle Scholar
  45. Shtutman M, Zhurinsky J, Simcha I, Albanese C, D'Amico M, Pestell R, Ben-Ze'ev A (1999) The CyclinD1 gene is a target of the β-catenin/LEF-1 pathway. Proc Natl Acad Sci U S A 96(10):5522–5527PubMedCrossRefGoogle Scholar
  46. Stacey DW (2003) Cyclin D1 serves as a cell cycle regulatory switch in actively proliferating cells. Curr Opin Cell Biol 15(2):158–163PubMedCrossRefGoogle Scholar
  47. Topol L, Jiang X, Choi H, Garrett-Beal L, Carolan PJ, Yang Y (2003) Wnt-5a inhibits the canonical Wnt pathway by promoting GSK-3-independent beta-catenin degradation. J Cell Biol 162:899–908. PubMedCrossRefPubMedCentralGoogle Scholar
  48. Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, Harris NL, Le Beau MM, Hellström-Lindberg E, Tefferi A, Bloomfield CD (2009) The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 30 114(5):937–951. CrossRefGoogle Scholar
  49. Wang Y, Krivtsov AV, Sinha AU, North TE, Goessling W, Feng Z, Zon LI, Armstrong SA (2010) The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science 327(5973):1650–1653. PubMedCrossRefPubMedCentralGoogle Scholar
  50. Weir EG, Ansari-Lari MA, Batista DA, Griffin CA, Fuller S, Smith BD, Borowitz MJ (2007) Acute bilineal leukemia: a rare disease with poor outcome. Leukemia 21(11):2264–2270. PubMedCrossRefGoogle Scholar
  51. Wu X, McMurray CT (2001) Calmodulin kinase II attenuation of gene transcription by preventing cAMP response element-binding protein (CREB) dimerization and binding of the CREB-binding protein. J Biol Chem 276(3):1735–1741. PubMedCrossRefGoogle Scholar
  52. Yan L, Du Q, Yao J, Liu R (2016) ROR2 inhibits the proliferation of gastric carcinoma cells via activation of non-canonical Wnt signaling. Exp Ther Med 12(6):4128–4134. PubMedCrossRefPubMedCentralGoogle Scholar
  53. Ying J, Li H, Chen YW, Srivastava G, Gao Z, Tao Q (2007) WNT5A is epigenetically silenced in hematologic malignancies and inhibits leukemia cell growth as a tumor suppressor. Blood 110:4130–4131. PubMedCrossRefGoogle Scholar
  54. Ysebaert L, Chicanne G, Demur C, De Toni F, Prade-Houdellier N, Ruidavets JB, Mansat-De Mas V, Rigal-Huguet F, Laurent G, Payrastre B, Manenti S, Racaud-Sultan C (2006) Expression of β-catenin by acute myeloid leukemia cells predicts enhanced clonogenic capacities and poor prognosis. Leukemia 20(7):1211–1216. PubMedCrossRefGoogle Scholar
  55. Yuan Y, Niu CC, Deng G, Li ZQ, Pan J, Zhao C, Yang ZL, Si WK (2011, 27(1)) The Wnt5a/Ror2 noncanonical signaling pathway inhibits canonical Wnt signaling in K562 cells. Int J Mol Med:63–69.
  56. Zang S, Liu N, Wang H, Wald DN, Shao N, Zhang J, Ma D, Ji C, Tse W (2014) Wnt signaling is involved in 6-benzylthioinosine-induced AML cell differentiation. BMC Cancer 14(1):886. PubMedCrossRefPubMedCentralGoogle Scholar
  57. Zhan T, Rindtorff N, Boutros M (2017) Wnt signaling in cancer. Oncogene 36:1461–1473. PubMedCrossRefGoogle Scholar
  58. Zhang B, Li M, McDonald T, Holyoake TL, Moon RT, Campana D, Shultz L, Bhatia R (2013) Microenvironmental protection of CML stem and progenitor cells from tyrosine kinase inhibitors through N-cadherin and Wnt–β-catenin signaling. Blood 121(10):1824–1838. PubMedCrossRefPubMedCentralGoogle Scholar
  59. Zhi L, Gao Y, Yu C, Zhang Y, Zhang B, Yang J, Yao Z (2016) N-cadherin aided in maintaining the characteristics of leukemic stem cells. Anat Rec (Hoboken) 299(7):990–998. CrossRefGoogle Scholar
  60. Zhou HR, FU HY, WU DS, Zhang YY, Huang SH, Chen CJ, Yan JG, Huang JL, Shen JZ (2017) Relationship between epigenetic changes in Wnt antagonists and acute leukemia. Oncol Rep 37:2663–2671. PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© The International CCN Society 2018

Authors and Affiliations

  • Sukalpa Chattopadhyay
    • 1
  • Malay Chaklader
    • 1
    • 2
  • Sujata Law
    • 1
    Email author
  1. 1.Stem Cell Research and Application Unit, Department of Biochemistry and Medical BiotechnologyCalcutta School of Tropical MedicineKolkataIndia
  2. 2.Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, Prometheus, Division of Skeletal Tissue EngineeringKU LeuvenLeuvenBelgium

Personalised recommendations