Advertisement

Journal of Cell Communication and Signaling

, Volume 12, Issue 1, pp 281–287 | Cite as

Galectin-3 regulation of wound healing and fibrotic processes: insights for chronic skin wound therapeutics

  • Karrington McLeod
  • John T. Walker
  • Douglas W. Hamilton
Review

Abstract

A member of the lectin family, galectin-3 is a 250 amino-acid protein that contains a C-terminus carbohydrate recognition domain (CRD) that recognizes β-galactosides. Considered to have certain common properties associated with matricellular proteins, galectin-3 is expressed in the dermis and epidermis in healthy skin and is upregulated in skin healing, peaking at day 1 post wounding in mice. Galectin-3 has been implicated in several processes central to the wound healing response, specifically in the regulation of inflammation, macrophage polarization, angiogenesis, fibroblast to myofibroblast transition and re-epithelialization. However, it appears that many of the effects of Galectin-3 are highly tissue specific and context dependent. Genetic deletion of galectin-3 shows different effects in skin compared to lung, heart, and kidney remodeling. In this review, we will compare galectin-3 functions in these tissues. Furthermore, we will discuss, based on its identified regulation of cell processes, whether in an exogenous form, galectin-3 could represent a novel therapeutic for impaired skin healing.

Keywords

Galectin-3 Matricellular protein Skin healing Inflammation Re-epithelialization 

Notes

Acknowledgments

This work was funded by the Canadian Institutes of Health Research (Operating grant RN247506) to D. W. Hamilton.

References

  1. Ahmad N, Gabius HJ, Andre S, Kaltner H, Sabesan S, Roy R, Liu B, Macaluso F, Brewer CF (2004) Galectin-3 precipitates as a pentamer with synthetic multivalent carbohydrates and forms heterogeneous cross-linked complexes. J Biol Chem 279(12):10841–10847CrossRefPubMedGoogle Scholar
  2. Barondes SH (1994) Galectins: a family of β-Galactoside-binding Lectins. Cell 76:597–598CrossRefPubMedGoogle Scholar
  3. Bhaumik P, St-Pierre G, Milot V, St-Pierre C, Sato S (2013) Galectin-3 facilitates neutrophil recruitment as an innate immune response to a parasitic protozoa cutaneous infection. J Immunol 190(2):630–640CrossRefPubMedGoogle Scholar
  4. Bowering CK (1998) Dermagraft in the treatment of diabetic foot ulcers. J Cutan Med Surg 3(Suppl 1):29–32Google Scholar
  5. Brancato SK, Albina JE (2011) Wound macrophages as key regulators of repair: origin, phenotype, and function. Am J Pathol 178(1):19–25CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cao Z, Said N, Amin S, Wu HK, Bruce A, Garate M, Hsu DK, Kuwabara I, Liu FT, Panjwani N (2002) Galectins-3 and -7, but not galectin-1, play a role in re-epithelialization of wounds. J Biol Chem 277(44):42299–42305CrossRefPubMedGoogle Scholar
  7. Chaby G, Senet P, Vaneau M, Martel P, Guillaume JC, Meaume S, Teot L, Debure C, Dompmartin A, Bachelet H et al (2007) Dressings for acute and chronic wounds: a systematic review. Arch Dermatol 143(10):1297–1304CrossRefPubMedGoogle Scholar
  8. Chen SC, Kuo PL (2016) The role of Galectin-3 in the kidneys. Int J Mol Sci 17(4):565CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cherayil BJ, Chaitovitz S, Wong C, Pillai S (1990) Molecular cloning of a human macrophage lectin specific for galactose. Proc Natl Acad Sci U S A 87(18):7324–7328CrossRefPubMedPubMedCentralGoogle Scholar
  10. Danella Polli C, Alves Toledo K, Franco LH, Sammartino Mariano V, de Oliveira LL, Soares Bernardes E, Roque-Barreira MC, Pereira-da-Silva G (2013) Monocyte migration driven by Galectin-3 occurs through distinct mechanisms involving selective interactions with the extracellular matrix. ISRN Inflamm 2013:259256CrossRefPubMedPubMedCentralGoogle Scholar
  11. Dumic J, Dabelic S, Flogel M (2006) Galectin-3: an open-ended story. Biochim Biophys Acta 1760(4):616–635CrossRefPubMedGoogle Scholar
  12. Dvorankova B, Szabo P, Lacina L, Gal P, Uhrova J, Zima T, Kaltner H, Andre S, Gabius HJ, Sykova E et al (2011) Human galectins induce conversion of dermal fibroblasts into myofibroblasts and production of extracellular matrix: potential application in tissue engineering and wound repair. Cells Tissues Organs 194(6):469–480CrossRefPubMedGoogle Scholar
  13. Elliott CG, Forbes TL, Leask A, Hamilton DW (2015) Inflammatory microenvironment and tumor necrosis factor alpha as modulators of periostin and CCN2 expression in human non-healing skin wounds and dermal fibroblasts. Matrix Biol 43:71–84CrossRefPubMedGoogle Scholar
  14. Elliott CG, Hamilton DW (2011) Deconstructing fibrosis research: do pro-fibrotic signals point the way for chronic dermal wound regeneration? J Cell Commun Signal 5(4):301–315CrossRefPubMedPubMedCentralGoogle Scholar
  15. Falanga V (1992) Growth factors and chronic wounds: the need to understand the microenvironment. J Dermatol 19(11):667–672CrossRefPubMedGoogle Scholar
  16. Frigeri LG, Liu FT (1992) Surface expression of functional IgE binding protein, an endogenous lectin, on mast cells and macrophages. J Immunol 148(3):861–867PubMedGoogle Scholar
  17. Fritsch K, Mernberger M, Nist A, Stiewe T, Brehm A, Jacob R (2016) Galectin-3 interacts with components of the nuclear ribonucleoprotein complex. BMC Cancer 16:502CrossRefPubMedPubMedCentralGoogle Scholar
  18. Frunza O, Russo I, Saxena A, Shinde AV, Humeres C, Hanif W, Rai V, Su Y, Frangogiannis NG (2016) Myocardial Galectin-3 expression is associated with remodeling of the pressure-overloaded heart and may delay the hypertrophic response without affecting survival, dysfunction, and cardiac fibrosis. Am J Pathol 186(5):1114–1127CrossRefPubMedPubMedCentralGoogle Scholar
  19. Fujii A, Shearer TR, Azuma M (2015) Galectin-3 enhances extracellular matrix associations and wound healing in monkey corneal epithelium. Exp Eye Res 137:71–78CrossRefPubMedPubMedCentralGoogle Scholar
  20. Funasaka T, Raz A, Nangia-Makker P (2014) Nuclear transport of galectin-3 and its therapeutic implications. Semin Cancer Biol 27:30–38CrossRefPubMedGoogle Scholar
  21. Gethin G, Cowman S, Kolbach DN (2015) Debridement for venous leg ulcers. Cochrane Database Syst Rev(9): CD008599Google Scholar
  22. Goldman R (2004) Growth factors and chronic wound healing: past, present, and future. Adv Skin Wound Care 17(1):24–35CrossRefPubMedGoogle Scholar
  23. Gonzalez GE, Cassaglia P, Noli Truant S, Fernandez MM, Wilensky L, Volberg V, Malchiodi EL, Morales C, Gelpi RJ (2014) Galectin-3 is essential for early wound healing and ventricular remodeling after myocardial infarction in mice. Int J Cardiol 176(3):1423–1425CrossRefPubMedGoogle Scholar
  24. He J, Li X, Luo H, Li T, Zhao L, Qi Q, Liu Y, Yu Z (2017) Galectin-3 mediates the pulmonary arterial hypertension-induced right ventricular remodeling through interacting with NADPH oxidase 4. J Am Soc Hypertens 11(5):275–289 e272CrossRefPubMedGoogle Scholar
  25. Honig E, Schneider K, Jacob R (2015) Recycling of galectin-3 in epithelial cells. Eur J Cell Biol 94(7–9):309–315CrossRefPubMedGoogle Scholar
  26. Karlsson A, Christenson K, Matlak M, Bjorstad A, Brown KL, Telemo E, Salomonsson E, Leffler H, Bylund J (2009) Galectin-3 functions as an opsonin and enhances the macrophage clearance of apoptotic neutrophils. Glycobiology 19(1):16–20CrossRefPubMedGoogle Scholar
  27. Karlsson A, Follin P, Leffler H, Dahlgren C (1998) Galectin-3 activates the NADPH-oxidase in exudated but not peripheral blood neutrophils. Blood 91(9):3430–3438PubMedGoogle Scholar
  28. Kasper M, Hughes RC (1996) Immunocytochemical evidence for a modulation of galectin 3 (Mac-2), a carbohydrate binding protein, in pulmonary fibrosis. J Pathol 179(3):309–316CrossRefPubMedGoogle Scholar
  29. Kuwabara I, Liu FT (1996) Galectin-3 promotes adhesion of human neutrophils to laminin. J Immunol 156(10):3939–3944PubMedGoogle Scholar
  30. Li LC, Li J, Gao J (2014) Functions of galectin-3 and its role in fibrotic diseases. J Pharmacol Exp Ther 351(2):336–343CrossRefPubMedGoogle Scholar
  31. Liu W, Hsu DK, Chen HY, Yang RY, Carraway KL 3rd, Isseroff RR, Liu FT (2012) Galectin-3 regulates intracellular trafficking of EGFR through Alix and promotes keratinocyte migration. J Invest Dermatol 132(12):2828–2837CrossRefPubMedPubMedCentralGoogle Scholar
  32. Luo H, Liu B, Zhao L, He J, Li T, Zha L, Li X, Qi Q, Liu Y, Yu Z (2017) Galectin-3 mediates pulmonary vascular remodeling in hypoxia-induced pulmonary arterial hypertension. J Am Soc Hypertens 11(10):673–683 e673CrossRefPubMedGoogle Scholar
  33. MacKinnon AC, Farnworth SL, Hodkinson PS, Henderson NC, Atkinson KM, Leffler H, Nilsson UJ, Haslett C, Forbes SJ, Sethi T (2008) Regulation of alternative macrophage activation by galectin-3. J Immunol 180(4):2650–2658CrossRefPubMedGoogle Scholar
  34. Mackinnon AC, Gibbons MA, Farnworth SL, Leffler H, Nilsson UJ, Delaine T, Simpson AJ, Forbes SJ, Hirani N, Gauldie J et al (2012) Regulation of transforming growth factor-beta1-driven lung fibrosis by galectin-3. Am J Respir Crit Care Med 185(5):537–546CrossRefPubMedPubMedCentralGoogle Scholar
  35. Markowska AI, Jefferies KC, Panjwani N (2011) Galectin-3 protein modulates cell surface expression and activation of vascular endothelial growth factor receptor 2 in human endothelial cells. J Biol Chem 286(34):29913–29921CrossRefPubMedPubMedCentralGoogle Scholar
  36. Markowska AI, Liu FT, Panjwani N (2010) Galectin-3 is an important mediator of VEGF- and bFGF-mediated angiogenic response. J Exp Med 207(9):1981–1993CrossRefPubMedPubMedCentralGoogle Scholar
  37. Mazurek N, Conklin J, Byrd JC, Raz A, Bresalier RS (2000) Phosphorylation of the beta-galactoside-binding protein galectin-3 modulates binding to its ligands. J Biol Chem 275(46):36311–36315CrossRefPubMedGoogle Scholar
  38. Mazurek JA, Horne BD, Saeed W, Sardar MR, Zolty R (2017) Galectin-3 levels are elevated and predictive of mortality in pulmonary hypertension. Heart Lung Circ 26(11):1208–1215CrossRefPubMedGoogle Scholar
  39. Melo FH, Butera D, Junqueira Mde S, Hsu DK, da Silva AM, Liu FT, Santos MF, Chammas R (2011) The promigratory activity of the matricellular protein galectin-3 depends on the activation of PI-3 kinase. PLoS One 6(12):e29313CrossRefPubMedPubMedCentralGoogle Scholar
  40. Midwood KS, Williams LV, Schwarzbauer JE (2004) Tissue repair and the dynamics of the extracellular matrix. Int J Biochem Cell Biol 36(6):1031–1037CrossRefPubMedGoogle Scholar
  41. Nakahara S, Oka N, Wang Y, Hogan V, Inohara H, Raz A (2006) Characterization of the nuclear import pathways of galectin-3. Cancer Res 66(20):9995–10006CrossRefPubMedGoogle Scholar
  42. Nangia-Makker P, Honjo Y, Sarvis R, Akahani S, Hogan V, Pienta KJ, Raz A (2000) Galectin-3 induces endothelial cell morphogenesis and angiogenesis. Am J Pathol 156(3):899–909CrossRefPubMedPubMedCentralGoogle Scholar
  43. Ochieng J, Furtak V, Lukyanov P (2002) Extracellular functions of galectin-3. Glycoconj J 19(7–9):527–535CrossRefPubMedGoogle Scholar
  44. Okamura DM, Pasichnyk K, Lopez-Guisa JM, Collins S, Hsu DK, Liu FT, Eddy AA (2011) Galectin-3 preserves renal tubules and modulates extracellular matrix remodeling in progressive fibrosis. Am J Physiol Renal Physiol 300(1):F245–F253CrossRefPubMedGoogle Scholar
  45. Panjwani N (2014) Role of galectins in re-epithelialization of wounds. Ann Transl Med 2(9):89PubMedPubMedCentralGoogle Scholar
  46. Pepe D, Elliott CG, Forbes TL, Hamilton DW (2014) Detection of galectin-3 and localization of advanced glycation end products (AGE) in human chronic skin wounds. Histol Histopathol 29(2):251–258PubMedGoogle Scholar
  47. Rabinovich GA, Rubinstein N, Toscano MA (2002) Role of galectins in inflammatory and immunomodulatory processes. Biochim Biophys Acta 1572(2–3):274–284CrossRefPubMedGoogle Scholar
  48. Robertson MW, Albrandt K, Keller D, Liu FT (1990) Human Ige-binding protein - a soluble Lectin exhibiting a highly conserved interspecies sequence and differential recognition of Ige Glycoforms. Biochemistry 29(35):8093–8100CrossRefPubMedGoogle Scholar
  49. Robson MC (1997) The role of growth factors in the healing of chronic wounds. Wound Repair Regen 5(1):12–17CrossRefPubMedGoogle Scholar
  50. Sano H, Hsu DK, Yu L, Apgar JR, Kuwabara I, Yamanaka T, Hirashima M, Liu FT (2000) Human galectin-3 is a novel chemoattractant for monocytes and macrophages. J Immunol 165(4):2156–2164CrossRefPubMedGoogle Scholar
  51. Saravanan C, Liu FT, Gipson IK, Panjwani N (2009) Galectin-3 promotes lamellipodia formation in epithelial cells by interacting with complex N-glycans on alpha3beta1 integrin. J Cell Sci 122(Pt 20):3684–3693CrossRefPubMedPubMedCentralGoogle Scholar
  52. Seetharaman J, Kanigsberg A, Slaaby R, Leffler H, Barondes SH, Rini JM (1998) X-ray crystal structure of the human galectin-3 carbohydrate recognition domain at 2.1-a resolution. J Biol Chem 273(21):13047–13052CrossRefPubMedGoogle Scholar
  53. Steed DL, Donohoe D, Webster MW, Lindsley L (1996) Effect of extensive debridement and treatment on the healing of diabetic foot ulcers. Diabetic ulcer study group. J Am Coll Surg 183(1):61–64PubMedGoogle Scholar
  54. Streit M, Braathen LR (2000) Apligraf--a living human skin equivalent for the treatment of chronic wounds. Int J Artif Organs 23(12):831–833PubMedGoogle Scholar
  55. Veves A, Falanga V, Armstrong DG, Sabolinski ML, S. Apligraf Diabetic Foot Ulcer (2001) Graftskin, a human skin equivalent, is effective in the management of noninfected neuropathic diabetic foot ulcers: a prospective randomized multicenter clinical trial. Diabetes Care 24(2):290–295CrossRefPubMedGoogle Scholar
  56. Walker JT, Elliott CG, Forbes TL, Hamilton DW (2016) Genetic deletion of Galectin-3 does not impair full-thickness Excisional skin healing. J Invest Dermatol 136(5):1042–1050CrossRefPubMedGoogle Scholar
  57. Walker JT, Kim S, Michelsons S, Creber K, Elliott CG, Leask A, Hamilton DW (2015) Cell-matrix interactions governing skin repair: matricellular proteins as diverse modulators of cell function. Res Rep Biochem 5:73–88Google Scholar
  58. Wesley UV, Vemuganti R, Ayvaci ER, Dempsey RJ (2013) Galectin-3 enhances angiogenic and migratory potential of microglial cells via modulation of integrin linked kinase signaling. Brain Res 1496:1–9CrossRefPubMedGoogle Scholar
  59. Yamaoka A, Kuwabara I, Frigeri LG, Liu FT (1995) A human lectin, galectin-3 (epsilon bp/Mac-2), stimulates superoxide production by neutrophils. J Immunol 154(7):3479–3487PubMedGoogle Scholar

Copyright information

© The International CCN Society 2018

Authors and Affiliations

  • Karrington McLeod
    • 1
  • John T. Walker
    • 2
  • Douglas W. Hamilton
    • 1
    • 2
    • 3
  1. 1.Biomedical Engineering Graduate Program, Schulich School of Medicine and DentistryUniversity of Western OntarioLondonCanada
  2. 2.Department of Anatomy & Cell Biology, Schulich School of Medicine and DentistryUniversity of Western OntarioLondonCanada
  3. 3.Division of Oral Biology, Schulich School of Medicine and DentistryUniversity of Western OntarioLondonCanada

Personalised recommendations