Advertisement

Monocyte chemoattractant protein-1 (MCP-1/CCL2) in diabetic retinopathy: latest evidence and clinical considerations

  • Yousof Taghavi
  • Gholamhossein Hassanshahi
  • Nicholas G. Kounis
  • Ioanna Koniari
  • Hossein KhorramdelazadEmail author
Review
  • 33 Downloads

Abstract

Diabetic retinopathy (DR) is considered as a diabetes-related complication that can render severe visual impairments and is also a risk factor for acquired blindness in both developed as well as developing countries. Through fibrovascular epiretinal membranes (ERMs), this condition can similarly lead to tractional retinal detachment. Laboratory efforts evaluating the DR pathogenesis can be provided by ocular vitreous fluid and ERMs resulting from vitrectomy. The clinical stages of DR are significantly associated with expression levels of certain chemokines, including monocyte chemotactic protein-1 (MCP-1) in the intraocular fluid. The MCP-1 is also a known potent chemotactic factor for monocytes and macrophages that can stimulate them to produce superoxide and other mediators. Following hyperglycemia, retinal pigmented epithelial (RPE) cells, endothelial cells, and Müller’s glial cells are of utmost importance for MCP-1 production, and vitreous MCP-1 levels rise in patients with DR. Increased expression of the MCP-1 in the eyes can also play a significant role in the pathogenesis of DR. In this review, current clinical and laboratory progress achieved on the MCP-1 and the DR concerning neovascularization and inflammatory responses in vitreous and/or aqueous humor of DR patients was summarized. It was suggested that further exploration of the MCP-1/CCR2 axis association between clinical stages of DR and expression levels of inflammatory and angiogenic cytokines and chemokines, principally the MCP-1 might lead to potential therapies aiming at neutralizing antibodies and viral vectors.

Keywords

Retinopathy CCL2 MCP-1 DR PDR 

Notes

Acknowledgments

This research project was supported by Rafsanjan University of Medical Sciences, Iran.

Compliance with ethical standards

Conflict of interest

All of the authors declared no conflict of interest.

References

  1. Abcouwer SF (2013) Angiogenic factors and cytokines in diabetic retinopathy. J Clin Cell Immunol 1(11):1–12Google Scholar
  2. Adamis A (2002) Is diabetic retinopathy an inflammatory disease? BMJ Publishing Group Ltd., Is diabetic retinopathy an inflammatory disease?Google Scholar
  3. Adamis AP, Berman AJ (2008) Immunological mechanisms in the pathogenesis of diabetic retinopathy. Seminars in immunopathology. SpringerGoogle Scholar
  4. Aiello LP, Avery RL, Arrigg PG, Keyt BA, Jampel HD, Shah ST, Pasquale LR, Thieme H, Iwamoto MA, Park JE (1994) Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med 331(22):1480–1487CrossRefPubMedGoogle Scholar
  5. Antunica AG, Karaman K, Znaor L, Sapunar A, Buško V, Puzović V (2012) IL-12 concentrations in the aqueous humor and serum of diabetic retinopathy patients. Graefes Arch Clin Exp Ophthalmol 250(6):815–821CrossRefGoogle Scholar
  6. Bachelerie F, Ben-Baruch A, Burkhardt A, Combadiere C, Farber J, Graham G, Horuk R, Sparre-Ulrich A, Locati M, Luster A (2013) Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol Rev 66(1):71P–779PGoogle Scholar
  7. Bartoli C, Civatte M, Pellissier J, Figarella-Branger D (2001) CCR2A and CCR2B, the two isoforms of the monocyte chemoattractant protein-1 receptor are up-regulated and expressed by different cell subsets in idiopathic inflammatory myopathies. Acta Neuropathol 102(4):385–392PubMedGoogle Scholar
  8. Behfar S, Hassanshahi G, Nazari A, Khorramdelazad H (2018) A brief look at the role of monocyte chemoattractant protein-1 (CCL2) in the pathophysiology of psoriasis. Cytokine 110:226–231Google Scholar
  9. Bian Z-M, Elner SG, Strieter RM, Kunkel SL, Lukacs NW, Elner VM (1999) IL-4 potentiates IL-1ß-and TNF-a-stimulated IL-8 and MCP-1 protein production in human retinal pigment epithelial cells. Curr Eye Res 18(5):349–357CrossRefPubMedGoogle Scholar
  10. Bian Z-M, Field MG, Elner SG, Kahlenberg JM, Elner VM (2018) Distinct Cd40l receptors mediate inflammasome activation and secretion of Il-1β and Mcp-1 in cultured human retinal pigment epithelial cells. Exp Eye Res 170:29–39CrossRefPubMedGoogle Scholar
  11. Boulton M, Foreman D, Williams G, McLeod D (1998) VEGF localisation in diabetic retinopathy. Br J Ophthalmol 82(5):561–568CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bromberg-White JL, Glazer L, Downer R, Furge K, Boguslawski E, Duesbery NS (2013) Identification of VEGF-independent cytokines in proliferative diabetic retinopathy vitreous. Invest Ophthalmol Vis Sci 54(10):6472–6480CrossRefPubMedGoogle Scholar
  13. Brown Z, Strieter RM, Neild GH, Thompson RC, Kunkel SL, Westwick J (1992) IL-1 receptor antagonist inhibits monocyte chemotactic peptide 1 generation by human mesangial cells. Kidney Int 42(1):95–101CrossRefPubMedGoogle Scholar
  14. Capeans C, De MR, Lojo S, Salorio MS (1998) CC chemokines in the vitreous of patients with proliferative vitreoretinopathy and proliferative diabetic retinopathy. Retina (Philadelphia, PA) 18(6):546–550Google Scholar
  15. Charo IF, Myers SJ, Herman A, Franci C, Connolly AJ, Coughlin SR (1994) Molecular cloning and functional expression of two monocyte chemoattractant protein 1 receptors reveals alternative splicing of the carboxyl-terminal tails. Proc Natl Acad Sci 91(7):2752–2756CrossRefPubMedGoogle Scholar
  16. Chen B, He T, Xing Y, Cao T (2017a) Effects of quercetin on the expression of MCP-1, MMP-9 and VEGF in rats with diabetic retinopathy. Exp Ther Med 14(6):6022–6026PubMedPubMedCentralGoogle Scholar
  17. Chen H, Zhang X, Liao N, Wen F (2017b) Assessment of biomarkers using multiplex assays in aqueous humor of patients with diabetic retinopathy. BMC Ophthalmol 17(1):176CrossRefPubMedPubMedCentralGoogle Scholar
  18. Cheung CMG, Vania M, Ang M, Chee SP, Li J (2012) Comparison of aqueous humor cytokine and chemokine levels in diabetic patients with and without retinopathy. Mol Vis 18:830PubMedPubMedCentralGoogle Scholar
  19. Conti, I. and B. J. Rollins (2004). CCL2 (monocyte chemoattractant protein-1) and cancer. Semin Cancer Biol, Elsevier, 14, 149, 154Google Scholar
  20. Cui Y, Xu X, Bi H, Zhu Q, Wu J, Xia X, Ren Q, Ho PC (2006) Expression modification of uncoupling proteins and MnSOD in retinal endothelial cells and pericytes induced by high glucose: the role of reactive oxygen species in diabetic retinopathy. Exp Eye Res 83(4):807–816CrossRefPubMedGoogle Scholar
  21. Cushing SD, Berliner JA, Valente AJ, Territo MC, Navab M, Parhami F, Gerrity R, Schwartz CJ, Fogelman AM (1990) Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells. Proc Natl Acad Sci 87(13):5134–5138CrossRefPubMedGoogle Scholar
  22. Das A, Rangasamy S, McGuire P (2012) Chemokine mediated monocyte trafficking into the retina: role of inflammation in diabetic retinopathy. Invest Ophthalmol Vis Sci 53(14):5768–5768Google Scholar
  23. Demircan N, Safran B, Soylu M, Ozcan A, Sizmaz S (2006) Determination of vitreous interleukin-1 (IL-1) and tumour necrosis factor (TNF) levels in proliferative diabetic retinopathy. Eye 20(12):1366–1369CrossRefPubMedGoogle Scholar
  24. Deshmane SL, Kremlev S, Amini S, Sawaya BE (2009) Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interf Cytokine Res 29(6):313–326CrossRefGoogle Scholar
  25. Dong N, Li X, Xiao L, Yu W, Wang B, Chu L (2012) Upregulation of retinal neuronal MCP-1 in the rodent model of diabetic retinopathy and its function in vitro. Invest Ophthalmol Vis Sci 53(12):7567–7575CrossRefPubMedGoogle Scholar
  26. Dong N, Xu B, Wang B, Chu L (2013) Study of 27 aqueous humor cytokines in patients with type 2 diabetes with or without retinopathy. Mol Vis 19:1734PubMedPubMedCentralGoogle Scholar
  27. Dragomir E, Simionescu M (2006) Monocyte chemoattractant protein-1–a major contributor to the inflammatory process associated with diabetes. Arch Physiol Biochem 112(4–5):239–244CrossRefPubMedGoogle Scholar
  28. Eastlake K, Banerjee P, Angbohang A, Charteris D, Khaw P, Limb G (2016) Müller glia as an important source of cytokines and inflammatory factors present in the gliotic retina during proliferative vitreoretinopathy. Glia 64(4):495–506CrossRefPubMedGoogle Scholar
  29. El-Asrar AMA, Van Damme J, Put W, Veckeneer M, Dralands L, Billiau A, Missotten L (1997) Monocyte chemotactic protein-1 in proliferative vitreoretinal disorders. Am J Ophthalmol 123(5):599–606CrossRefGoogle Scholar
  30. El-Asrar AMA, Struyf S, Kangave D, Geboes K, Van Damme J (2006) Chemokines in proliferative diabetic retinopathy and proliferative vitreoretinopathy. Eur Cytokine Netw 17(3):155–165PubMedGoogle Scholar
  31. El-Asrar AMA, Nawaz MI, Kangave D, Geboes K, Ola MS, Ahmad S, Al-Shabrawey M (2011) High-mobility group box-1 and biomarkers of inflammation in the vitreous from patients with proliferative diabetic retinopathy. Mol Vis 17:1829PubMedPubMedCentralGoogle Scholar
  32. El-Asrar AMA, Struyf S, Mohammad G, Gouwy M, Rytinx P, Siddiquei MM, Hernández C, Alam K, Mousa A, De Hertogh G (2017) Osteoprotegerin is a new regulator of inflammation and angiogenesis in proliferative diabetic retinopathy. Invest Ophthalmol Vis Sci 58(7):3189–3201CrossRefPubMedGoogle Scholar
  33. Elner SG, Elner VM, Jaffe GJ, Stuart A, Kunkel SL, Strieter RM (1995) Cytokines in proliferative diabetic retinopathy and proliferative vitreoretinopathy. Curr Eye Res 14(11):1045–1053CrossRefPubMedGoogle Scholar
  34. Esser P, Heimann K, Wiedemann P (1993) Macrophages in proliferative vitreoretinopathy and proliferative diabetic retinopathy: differentiation of subpopulations. Br J Ophthalmol 77(11):731–733CrossRefPubMedPubMedCentralGoogle Scholar
  35. Feng C, Wang X, Liu T, Zhang M, Xu G, Ni Y (2017) Expression of CCL2 and its receptor in activation and migration of microglia and monocytes induced by photoreceptor apoptosis. Mol Vis 23:765PubMedPubMedCentralGoogle Scholar
  36. Funatsu H, Yamashita H, Noma H, Mimura T, Yamashita T, Hori S (2002) Increased levels of vascular endothelial growth factor and interleukin-6 in the aqueous humor of diabetics with macular edema. Am J Ophthalmol 133(1):70–77CrossRefPubMedGoogle Scholar
  37. Funatsu H, Yamashita H, Noma H, Mimura T, Nakamura S, Sakata K, Hori S (2005a) Aqueous humor levels of cytokines are related to vitreous levels and progression of diabetic retinopathy in diabetic patients. Graefes Arch Clin Exp Ophthalmol 243(1):3–8CrossRefPubMedGoogle Scholar
  38. Funatsu H, Yamashita H, Sakata K, Noma H, Mimura T, Suzuki M, Eguchi S, Hori S (2005b) Vitreous levels of vascular endothelial growth factor and intercellular adhesion molecule 1 are related to diabetic macular edema. Ophthalmology 112(5):806–816CrossRefPubMedGoogle Scholar
  39. Funatsu H, Noma H, Mimura T, Eguchi S, Hori S (2009) Association of vitreous inflammatory factors with diabetic macular edema. Ophthalmology 116(1):73–79CrossRefPubMedGoogle Scholar
  40. Gharaee-Kermani M, Denholm EM, Phan SH (1996) Costimulation of fibroblast collagen and transforming growth factor β1 gene expression by monocyte chemoattractant protein-1 via specific receptors. J Biol Chem 271(30):17779–17784CrossRefPubMedGoogle Scholar
  41. Ghasemi H, Ghazanfari T, Yaraee R, Owlia P, Hassan ZM, Faghihzadeh S (2012) Roles of IL-10 in ocular inflammations: a review. Ocul Immunol Inflamm 20(6):406–418CrossRefPubMedGoogle Scholar
  42. Goldberg RB (2009) Cytokine and cytokine-like inflammation markers, endothelial dysfunction, and imbalanced coagulation in development of diabetes and its complications. J Clin Endocrinol Metabol 94(9):3171–3182CrossRefGoogle Scholar
  43. Harada T, Harada C, Nakayama N, Okuyama S, Yoshida K, Kohsaka S, Matsuda H, Wada K (2000) Modification of glial–neuronal cell interactions prevents photoreceptor apoptosis during light-induced retinal degeneration. Neuron 26(2):533–541CrossRefPubMedGoogle Scholar
  44. Harada T, Harada C, Mitamura Y, Akazawa C, Ohtsuka K, Ohno S, Takeuchi S, Wada K (2002) Neurotrophic factor receptors in epiretinal membranes after human diabetic retinopathy. Diabetes Care 25(6):1060–1065CrossRefPubMedGoogle Scholar
  45. Harada C, Mitamura Y, Harada T (2006a) The role of cytokines and trophic factors in epiretinal membranes: involvement of signal transduction in glial cells. Prog Retin Eye Res 25(2):149–164CrossRefPubMedGoogle Scholar
  46. Harada C, Okumura A, Namekata K, Nakamura K, Mitamura Y, Ohguro H, Harada T (2006b) Role of monocyte chemotactic protein-1 and nuclear factor kappa B in the pathogenesis of proliferative diabetic retinopathy. Diabetes Res Clin Pract 74(3):249–256CrossRefPubMedGoogle Scholar
  47. Harkness K, Sussman J, Davies-Jones G, Greenwood J, Woodroofe M (2003) Cytokine regulation of MCP-1 expression in brain and retinal microvascular endothelial cells. J Neuroimmunol 142(1):1–9CrossRefPubMedGoogle Scholar
  48. Hernandez C, Segura R, Fonollosa A, Carrasco E, Francisco G, Simo R (2005) Interleukin-8, monocyte chemoattractant protein-1 and IL-10 in the vitreous fluid of patients with proliferative diabetic retinopathy. Diabet Med 22(6):719–722CrossRefPubMedGoogle Scholar
  49. Hong KH, Ryu J, Han KH (2005) Monocyte chemoattractant protein-1–induced angiogenesis is mediated by vascular endothelial growth factor-a. Blood 105(4):1405–1407CrossRefPubMedGoogle Scholar
  50. Huang S, Robinson JB, DeGuzman A, Bucana CD, Fidler IJ (2000) Blockade of nuclear factor-κB signaling inhibits angiogenesis and tumorigenicity of human ovarian cancer cells by suppressing expression of vascular endothelial growth factor and interleukin 8. Cancer Res 60(19):5334–5339PubMedGoogle Scholar
  51. Jeon HJ, Choi HJ, Park BH, Lee YH, Oh T (2013) Association of monocyte chemoattractant protein-1 (MCP-1) 2518A/G polymorphism with proliferative diabetic retinopathy in Korean type 2 diabetes. Yonsei Med J 54(3):621–625CrossRefPubMedPubMedCentralGoogle Scholar
  52. Jiang Z, Hennein L, Xu Y, Bao N, Coh P, Tao L (2016) Elevated serum monocyte chemoattractant protein-1 levels and its genetic polymorphism is associated with diabetic retinopathy in Chinese patients with type 2 diabetes. Diabet Med 33(1):84–90CrossRefPubMedGoogle Scholar
  53. Jonas JB, Jonas RA, Neumaier M, Findeisen P (2012) Cytokine concentration in aqueous humor of eyes with diabetic macular edema. Retina 32(10):2150–2157CrossRefPubMedGoogle Scholar
  54. Kern TS (2007) Contributions of inflammatory processes to the development of the early stages of diabetic retinopathy. J Diabetes Res 2007Google Scholar
  55. Kim MJ, Tam FW (2011) Urinary monocyte chemoattractant protein-1 in renal disease. Clin Chim Acta 412(23):2022–2030CrossRefPubMedGoogle Scholar
  56. Klein R, Klein BE, Moss SE, Cruickshanks KJ (1998) The Wisconsin epidemiologic study of diabetic retinopathy: XVII: the 14-year incidence and progression of diabetic retinopathy and associated risk factors in type 1 diabetes11Proprietary interest: none. Ophthalmology 105(10):1801–1815CrossRefPubMedGoogle Scholar
  57. Klein BE, Horak KL, Maynard JD, Lee KE, Klein R (2017) Association of Skin Intrinsic Fluorescence with retinal microvascular complications of long term type 1 diabetes in the Wisconsin epidemiologic study of diabetic retinopathy. Ophthalmic Epidemiol 24(4):211–216CrossRefPubMedPubMedCentralGoogle Scholar
  58. Knott R, Robertson M, Muckersie E, Folefac V, Fairhurst F, Wileman S, Forrester J (1999) A model system for the study of human retinal angiogenesis: activation of monocytes and endothelial cells and the association with the expression of the monocarboxylate transporter type 1 (MCT-1). Diabetologia 42(7):870–877CrossRefPubMedGoogle Scholar
  59. Lockwood CJ, Matta P, Krikun G, Koopman LA, Masch R, Toti P, Arcuri F, Huang S-TJ, Funai EF, Schatz F (2006) Regulation of monocyte chemoattractant protein-1 expression by tumor necrosis factor-α and interleukin-1β in first trimester human decidual cells: implications for preeclampsia. Am J Pathol 168(2):445–452CrossRefPubMedPubMedCentralGoogle Scholar
  60. Mantovani A (1999) The chemokine system: redundancy for robust outputs. Immunol Today 20(6):254–257CrossRefPubMedGoogle Scholar
  61. Matsumoto Y, Takahashi M, Ogata M (2002) Relationship between glycoxidation and cytokines in the vitreous of eyes with diabetic retinopathy. Jpn J Ophthalmol 46(4):406–412CrossRefPubMedGoogle Scholar
  62. Mitamura Y, Takeuchi S, Matsuda A, Tagawa Y, Mizue Y, Nishihira J (2001) Monocyte chemotactic protein-1 in the vitreous of patients with proliferative diabetic retinopathy. Ophthalmologica 215(6):415–418CrossRefPubMedGoogle Scholar
  63. Mitamura Y, Harada C, Harada T (2005) Role of cytokines and trophic factors in the pathogenesis of diabetic retinopathy. Curr Diabetes Rev 1(1):73–81CrossRefPubMedGoogle Scholar
  64. Murugeswari P, Shukla D, Rajendran A, Kim R, Namperumalsamy P, Muthukkaruppan V (2008) PROINFLAMMATORY CYTOKINES AND ANGIOGENIC AND ANTI-ANGIOGENIC FACTORS IN VITREOUS OF PATIENTS WITH PROLIFERATIVE DIABETIC RETINOPATHY AND EALES’DISEASE. Retina 28(6):817–824CrossRefPubMedGoogle Scholar
  65. Murugeswari P, Shukla D, Kim R, Namperumalsamy P, Stitt AW, Muthukkaruppan V (2014) Angiogenic potential of vitreous from proliferative diabetic retinopathy and Eales' disease patients. PLoS One 9(10):e107551CrossRefPubMedPubMedCentralGoogle Scholar
  66. Nawaz M, Van Raemdonck K, Mohammad G, Kangave D, Van Damme J, El-Asrar AA, Struyf S (2013) Autocrine CCL2, CXCL4, CXCL9 and CXCL10 signal in retinal endothelial cells and are enhanced in diabetic retinopathy. Exp Eye Res 109:67–76CrossRefPubMedGoogle Scholar
  67. O’Connor T, Borsig L, Heikenwalder M (2015) CCL2-CCR2 signaling in disease pathogenesis. Endocr Metab Immune Disord Drug Targets 15(2):105–118CrossRefPubMedGoogle Scholar
  68. Oitzinger W, Hofer-Warbinek R, Schmid JA, Koshelnick Y, Binder BR, de Martin R (2001) Adenovirus-mediated expression of a mutant IκB kinase 2 inhibits the response of endothelial cells to inflammatory stimuli. Blood 97(6):1611–1617CrossRefPubMedGoogle Scholar
  69. Outtz HH, Tattersall IW, Kofler NM, Steinbach N, Kitajewski J (2011) Notch1 controls macrophage recruitment and notch signaling is activated at sites of endothelial cell anastomosis during retinal angiogenesis in mice. Blood 118(12):3436–3439CrossRefPubMedPubMedCentralGoogle Scholar
  70. Ozturk BT, Bozkurt B, Kerimoglu H, Okka M, Kamis U, Gunduz K (2009) Effect of serum cytokines and VEGF levels on diabetic retinopathy and macular thickness. Mol Vis 15:1906PubMedPubMedCentralGoogle Scholar
  71. Patel J, Saleh G, Hykin P, Gregor Z, Cree I (2008) Concentration of haemodynamic and inflammatory related cytokines in diabetic retinopathy. Eye 22(2):223–228CrossRefPubMedGoogle Scholar
  72. Portillo J-AC, Greene JA, Okenka G, Miao Y, Sheibani N, Kern TS, Subauste CS (2014a) CD40 promotes the development of early diabetic retinopathy in mice. Diabetologia 57(10):2222–2231CrossRefPubMedPubMedCentralGoogle Scholar
  73. Portillo J-AC, Schwartz I, Zarini S, Bapputty R, Kern TS, Gubitosi-Klug RA, Murphy RC, Subauste MC, Subauste CS (2014b) Proinflammatory responses induced by CD40 in retinal endothelial and Müller cells are inhibited by blocking CD40-Traf2, 3 or CD40-Traf6 signaling. Invest Ophthalmol Vis Sci 55(12):8590–8597CrossRefPubMedPubMedCentralGoogle Scholar
  74. Rajamani U, Jialal I (2014) Hyperglycemia induces toll-like receptor-2 and-4 expression and activity in human microvascular retinal endothelial cells: implications for diabetic retinopathy. J Diabetes Res 2014:1–15CrossRefGoogle Scholar
  75. Rangasamy S, McGuire PG, Das A (2012) Diabetic retinopathy and inflammation: novel therapeutic targets. Middle East Afr J Ophthalmol 19(1):52–59Google Scholar
  76. Rangasamy S, McGuire PG, Nitta CF, Monickaraj F, Oruganti SR, Das A (2014) Chemokine mediated monocyte trafficking into the retina: role of inflammation in alteration of the blood-retinal barrier in diabetic retinopathy. PLoS One 9(10):e108508CrossRefPubMedPubMedCentralGoogle Scholar
  77. Reddy S, Amutha A, Rajalakshmi R, Bhaskaran R, Monickaraj F, Rangasamy S, Anjana RM, Abhijit S, Gokulakrishnan K, Das A, Mohan V, Balasubramanyam M (2017) Association of increased levels of MCP-1 and cathepsin-D in young onset type 2 diabetes patients (T2DM-Y) with severity of diabetic retinopathy. J Diabetes Complicat 31(5):804–809CrossRefPubMedGoogle Scholar
  78. Rutar M, Natoli R, Chia R, Valter K, Provis JM (2015) Chemokine-mediated inflammation in the degenerating retina is coordinated by Müller cells, activated microglia, and retinal pigment epithelium. J Neuroinflammation 12(1):8CrossRefPubMedPubMedCentralGoogle Scholar
  79. Sanders SK, Crean SM, Boxer PA, Kellner D, LaRosa GJ, Hunt SW (2000) Functional differences between monocyte chemotactic protein-1 receptor a and monocyte chemotactic protein-1 receptor B expressed in a Jurkat T cell. J Immunol 165(9):4877–4883CrossRefPubMedGoogle Scholar
  80. Sassa Y, Yoshida S, Ishikawa K, Asato R, Ishibashi T, Kono T (2016) The kinetics of VEGF and MCP-1 in the second vitrectomy cases with proliferative diabetic retinopathy. Eye 30(5):746–753CrossRefPubMedPubMedCentralGoogle Scholar
  81. Schröder S, Palinski W, Schmid-Schönbein G (1991) Activated monocytes and granulocytes, capillary nonperfusion, and neovascularization in diabetic retinopathy. Am J Pathol 139(1):81PubMedPubMedCentralGoogle Scholar
  82. Semeraro F, Bamonte G, Cifariello F, Romano MR, Costagliola C (2013) Vitreous mediators in retinal hypoxic diseases. Mediat Inflamm 2013Google Scholar
  83. Semeraro F, Cancarini A, Rezzola S, Romano M, Costagliola C (2015) Diabetic retinopathy: vascular and inflammatory disease. J Diabetes Res 2015:1–16CrossRefGoogle Scholar
  84. Simó R, Sundstrom JM, Antonetti DA (2014) Ocular anti-VEGF therapy for diabetic retinopathy: the role of VEGF in the pathogenesis of diabetic retinopathy. Diabetes Care 37(4):893–899CrossRefPubMedGoogle Scholar
  85. Standiford TJ, Kunkel S, Phan S, Rollins B, Strieter R (1991) Alveolar macrophage-derived cytokines induce monocyte chemoattractant protein-1 expression from human pulmonary type II-like epithelial cells. J Biol Chem 266(15):9912–9918PubMedGoogle Scholar
  86. Suzuki Y, Nakazawa M, Suzuki K, Yamazaki H, Miyagawa Y (2011) Expression profiles of cytokines and chemokines in vitreous fluid in diabetic retinopathy and central retinal vein occlusion. Jpn J Ophthalmol 55(3):256–263CrossRefPubMedGoogle Scholar
  87. Suzuki Y, Suzuki K, Kudo T, Metoki T, Nakazawa M (2016) Level of vascular endothelial growth factor in the vitreous fluid of proliferative diabetic retinopathy patients and prognosis after vitrectomy. Ophthalmologica 236(3):133–138CrossRefPubMedGoogle Scholar
  88. Tang J, Kern TS (2011) Inflammation in diabetic retinopathy. Prog Retin Eye Res 30(5):343–358CrossRefPubMedPubMedCentralGoogle Scholar
  89. Tashimo A, Mitamura Y, Nagai S, Nakamura Y, Ohtsuka K, Mizue Y, Nishihira J (2004) Aqueous levels of macrophage migration inhibitory factor and monocyte chemotactic protein-1 in patients with diabetic retinopathy. Diabet Med 21(12):1292–1297CrossRefPubMedGoogle Scholar
  90. Ueda A, Okuda K, Ohno S, Shirai A, Igarashi T, Matsunaga K, Fukushima J, Kawamoto S, Ishigatsubo Y, Okubo T (1994) NF-kappa B and Sp1 regulate transcription of the human monocyte chemoattractant protein-1 gene. J Immunol 153(5):2052–2063PubMedGoogle Scholar
  91. Vakilian A, Khorramdelazad H, Heidari P, Rezaei ZS, Hassanshahi G (2017) CCL2/CCR2 signaling pathway in glioblastoma multiforme. Neurochem Int 103(1–7):1–7CrossRefPubMedGoogle Scholar
  92. Van Antwerp DJ, Martin SJ, Kafri T, Green DR, Verma IM (1996) Suppression of TNF-α-induced apoptosis by NF-κB. Science 274(5288):787–789CrossRefPubMedGoogle Scholar
  93. Van Coillie E, Van Damme J, Opdenakker G (1999) The MCP/eotaxin subfamily of CC chemokines. Cytokine Growth Factor Rev 10(1):61–86CrossRefPubMedGoogle Scholar
  94. Veenstra AA, Kern T (2014) Role of inflammatory CCR2+ monocytes in early stage diabetic retinopathy. Invest Ophthalmol Vis Sci 55(13):1050–1050Google Scholar
  95. Vujosevic S, Simó R (2017) Local and systemic inflammatory biomarkers of diabetic retinopathy: an integrative approach. Invest Ophthalmol Vis Sci 58(6):BIO68–BIO75CrossRefPubMedGoogle Scholar
  96. Vujosevic S, Micera A, Bini S, Berton M, Esposito G, Midena E (2016) Proteome analysis of retinal glia cells-related inflammatory cytokines in the aqueous humour of diabetic patients. Acta Ophthalmol 94(1):56–64CrossRefPubMedGoogle Scholar
  97. Wakabayashi Y, Usui Y, Okunuki Y, Kezuka T, Takeuchi M, Iwasaki T, Ohno A, Goto H (2011) Increases of vitreous monocyte chemotactic protein 1 and interleukin 8 levels in patients with concurrent hypertension and diabetic retinopathy. Retina 31(9):1951–1957CrossRefPubMedGoogle Scholar
  98. Wang W, He M, Huang W (2016) Association of monocyte chemoattractant protein-1 gene 2518A/G polymorphism with diabetic retinopathy in type 2 diabetes mellitus: a meta-analysis. Diabetes Res Clin Pract 120:40–46CrossRefPubMedGoogle Scholar
  99. Wells T, Power CA, Lusti-Narasimhan M, Hoogewerf AJ, Cooke RM, Chung C, Peitsch M, Proudfoot A (1996) Selectivity and antagonism of chemokine receptors. J Leukoc Biol 59(1):53–60CrossRefPubMedGoogle Scholar
  100. Willermain F, Caspers-Velu L, Baudson N, Dubois C, Hamdane M, Willems F, Velu T, Bruyns C (2000) Role and expression of CD40 on human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 41(11):3485–3491PubMedGoogle Scholar
  101. Xia M, Sui Z (2009) Recent developments in CCR2 antagonists. Expert Opin Ther Pat 19(3):295–303CrossRefPubMedGoogle Scholar
  102. Yap H, Frankel A, Tam F (2017) Review article-MCP-1: a potential target for diabetic microvascular complications. Urol Nephrol Open Access J 5(3).  https://doi.org/10.15406/unoaj.2017.05.00171
  103. Yau JW, Rogers SL, Kawasaki R, Lamoureux EL, Kowalski JW, Bek T, Chen S-J, Dekker JM, Fletcher A, Grauslund J (2012) Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 35(3):556–564CrossRefPubMedPubMedCentralGoogle Scholar
  104. Yeo TK, Ahad MA, Kuo N-w, Spagnolo P, Menezo V, Lympany P, Lightman S (2006) Chemokine gene polymorphisms in idiopathic anterior uveitis. Cytokine 35(1):29–35CrossRefPubMedGoogle Scholar
  105. Yin H, Fang X, Ma J, Chen M, Yang Y, Guo S, Chen Z, Su Z, Feng L, Ye P (2016) Idiopathic choroidal neovascularization: intraocular inflammatory cytokines and the effect of intravitreal ranibizumab treatment. Sci Rep 6:31880CrossRefPubMedPubMedCentralGoogle Scholar
  106. Yoon B-y, Ju J-h, Jung YO, Jhun J-y, Park M-k, Park S-h, Cho C-s, Kim H-y (2007) Expression of CCR2A, an isoform of MCP-1 receptor, is increased by MCP-1, CD40 ligand and TGF-[beta] in fibroblast like synoviocytes of patients with RA. Exp Mol Med 39(4):499CrossRefPubMedGoogle Scholar
  107. Yoshida S, Kubo Y, Kobayashi Y, Zhou Y, Nakama T, Yamaguchi M, Tachibana T, Ishikawa K, Arita R, Nakao S (2015) Increased vitreous concentrations of MCP-1 and IL-6 after vitrectomy in patients with proliferative diabetic retinopathy: possible association with postoperative macular oedema. In: British Journal of ophthalmology: bjophthalmol-2014-306366, vol 99, pp 960–966Google Scholar
  108. Yoshimura T, Robinson E, Tanaka S, Appella E, Leonard E (1989) Purification and amino acid analysis of two human monocyte chemoattractants produced by phytohemagglutinin-stimulated human blood mononuclear leukocytes. J Immunol 142(6):1956–1962PubMedGoogle Scholar
  109. You J-J, Yang C-H, Yang C-M, Chen M-S (2014) Cyr61 induces the expression of monocyte chemoattractant protein-1 via the integrin ανβ3, FAK, PI3K/Akt, and NF-κB pathways in retinal vascular endothelial cells. Cell Signal 26(1):133–140CrossRefPubMedGoogle Scholar
  110. Yu Y, Zhang J, Zhu R, Zhao R, Chen J, Jin J, Tian Y, Su S (2017) The profile of Angiogenic factors in vitreous humor of the patients with proliferative diabetic retinopathy. Curr Mol Med 17(4):280–286CrossRefPubMedGoogle Scholar
  111. Zhang Y, Rollins BJ (1995) A dominant negative inhibitor indicates that monocyte chemoattractant protein 1 functions as a dimer. Mol Cell Biol 15(9):4851–4855CrossRefPubMedPubMedCentralGoogle Scholar
  112. Zhang W, Liu H, Al-Shabrawey M, Caldwell RW, Caldwell RB (2011a) Inflammation and diabetic retinal microvascular complications. J Cardiovasc Dis Res 2(2):96–103CrossRefPubMedPubMedCentralGoogle Scholar
  113. Zhang W, Liu H, Al-Shabrawey M, Caldwell RW, Caldwell RB (2011b) Inflammation and diabetic retinal microvascular complications. Elsevier, Inflammation and diabetic retinal microvascular complicationsGoogle Scholar
  114. Zhang Y, Zhang J, Zeng L, Huang H, Yang M, Fu X, Tian C, Xiang Z, Huang J, Fan H (2012) The-2518A/G polymorphism in the MCP-1 gene and tuberculosis risk: a meta-analysis. PLoS One 7(7):e38918CrossRefPubMedPubMedCentralGoogle Scholar
  115. Zhou J, Wang S, Xia X (2012) Role of intravitreal inflammatory cytokines and angiogenic factors in proliferative diabetic retinopathy. Curr Eye Res 37(5):416–420CrossRefPubMedGoogle Scholar
  116. Zou C, Han C, Zhao M, Yu J, Bai L, Yao Y, Gao S, Cao H, Zheng Z (2018) Change of ranibizumab-induced human vitreous protein profile in patients with proliferative diabetic retinopathy based on proteomics analysis. Clin Proteomics 15(1):12CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The International CCN Society 2019

Authors and Affiliations

  1. 1.Geriatric Care Research CenterRafsanjan University of Medical SciencesRafsanjanIran
  2. 2.Department of Ophthalmology and Otorhinolaryngology, School of MedicineRafsanjan University of Medical SciencesRafsanjanIran
  3. 3.Molecular Medicine Research Center, Research Institute of Basic Medical SciencesRafsanjan University of Medical SciencesRafsanjanIran
  4. 4.Department of Immunology, School of MedicineRafsanjan University of Medical SciencesRafsanjanIran
  5. 5.Department of CardiologyUniversity of Patras Medical SchoolPatrasGreece
  6. 6.Department of CardiologyQueen Elizabeth HospitalBirminghamEngland

Personalised recommendations