Journal of Cell Communication and Signaling

, Volume 12, Issue 2, pp 423–432 | Cite as

Promoter methylation of TCF21 may repress autophagy in the progression of lung cancer

  • Baokun Chen
  • Chao Zeng
  • Yiwang Ye
  • Da Wu
  • Zhimin Mu
  • Jixian Liu
  • Yuancai Xie
  • Hao WuEmail author
Research Article


Lung cancer is a leading cause of cancer mortality worldwide. Promoter methylation of transcription factor 21 (TCF21) was frequently observed in the early stage of non-small cell lung cancer (NSCLC). However, clinical relevance and molecular functions of TCF21 in NSCLC progression remain unclear. In this study, we analyzed the associations between TCF21 expression and clinicopathological features in 100 patients with NSCLC and revealed the underlying molecular mechanisms of TCF21 methylation on cell viability, apoptosis and invasion of H1299 cells. We found that the expression of TCF21 was significantly regulated by its methylation level in patients with NSCLC and was associated with tumor stage, metastasis and invasion. Demethylation of H1299 cells by 5-aza-2′-deoxycytine (5-Aza) demonstrated that a higher level of TCF21 expression led to remarkable decreases of cell viability and invasion ability but an increase of cell apoptosis. Accordingly, TCF21 knockdown showed converse results to high expression of TCF21. TCF21 knockdown cells exhibited significantly upregulated ATG-9, BECLIN-1, and LC3-I/II expressions but decreased p62 expression compared to wildtype cells. Inhibition of autophagy by 3-methyladenine (3-MA) elevated TCF21 expression and increased cell apoptosis. TCF21 expression is clinically related to the progress of lung cancer and may inhibit autophagy by suppressing ATG-9 and BECLIN-1. In turn, autophagy may also play an important role in regulation TCF21 expression.


Transcription factor 21 (TCF21) Methylation Non-small cell lung cancer (NSCLC) Autophagy 



transcription factor 21


non-small cell lung cancer







This study was funded by the Science and Technology Development Fund Project of Shenzhen (No. JCYJ 20150403091443278 and JCYJ 20150403091443310).

Compliance with ethical standards

Conflict of interest

The authors have no conflict of interest to disclose.

Supplementary material

12079_2017_418_MOESM1_ESM.docx (329 kb)
ESM 1 (DOCX 328 kb)


  1. Aberle DR, Adams AM, Berg CD, Black WC, Clapp JD, Fagerstrom RM, Gareen IF, Gatsonis C, Marcus PM, Sicks JD (2011) Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med 365:395–409CrossRefPubMedGoogle Scholar
  2. Abrahamsen H, Stenmark H, Platta HW (2012) Ubiquitination and phosphorylation of Beclin 1 and its binding partners: tuning class III phosphatidylinositol 3-kinase activity and tumor suppression. FEBS Lett 586:1584–1591CrossRefPubMedGoogle Scholar
  3. Ahmad A, Azim S, Zubair H, Khan MA, Singh S, Carter JE, Rocconi RP, Singh AP (2017) Epigenetic basis of cancer health disparities: looking beyond genetic differences. Biochim Biophys Acta 1868:16–28PubMedGoogle Scholar
  4. Anglim PP, Galler JS, Koss MN, Hagen JA, Turla S, Campan M, Weisenberger DJ, Laird PW, Siegmund KD, Laird-Offringa IA (2008) Identification of a panel of sensitive and specific DNA methylation markers for squamous cell lung cancer. Mol Cancer 7:62CrossRefPubMedPubMedCentralGoogle Scholar
  5. Arab K, Smith LT, Gast A, Weichenhan D, Huang JP, Claus R, Hielscher T, Espinosa AV, Ringel MD, Morrison CD, Schadendorf D, Kumar R, Plass C (2011) Epigenetic deregulation of TCF21 inhibits metastasis suppressor KISS1 in metastatic melanoma. Carcinogenesis 32:1467–1473CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cao QH, Liu F, Yang ZL, XH F, Yang ZH, Liu Q, Wang L, Wan XB, Fan XJ (2016) Prognostic value of autophagy related proteins ULK1, Beclin 1, ATG3, ATG5, ATG7, ATG9, ATG10, ATG12, LC3B and p62/SQSTM1 in gastric cancer. Am J Transl Res 8:3831–3847PubMedPubMedCentralGoogle Scholar
  7. Conway K, Edmiston SN, Tse C-K, Bryant C, Kuan PF, Hair BY, Parrish EA, May R, Swift-Scanlan T (2015) Racial variation in breast tumor promoter methylation in the Carolina breast cancer study. Cancer Epidemiology and Prevention Biomarkers:cebp 24:921–930CrossRefGoogle Scholar
  8. Dai Y, Duan H, Duan C, Zhou R, He Y, Tu Q, Shen L (2016) Down-regulation of TCF21 by hypermethylation induces cell proliferation, migration and invasion in colorectal cancer. Biochem Biophys Res Commun 469:430–436CrossRefPubMedGoogle Scholar
  9. Dwi Putra SE, Neuber C, Reichetzeder C, Hocher B, Kleuser B (2014) Analysis of genomic DNA methylation levels in human placenta using liquid chromatography-electrospray ionization tandem mass spectrometry. Cell Physiol Biochem 33:945–952CrossRefPubMedGoogle Scholar
  10. Ferlay J, Bray F, Pisani P, Parkin D (2004) Cancer incidence, mortality and prevalence worldwide. IARC Cancer Base No. 5, version 2.0. IARCPress, LyonGoogle Scholar
  11. Fu LL, Cheng Y, Liu B (2013) Beclin-1: autophagic regulator and therapeutic target in cancer. Int J Biochem Cell Biol 45:921–924CrossRefPubMedGoogle Scholar
  12. Funderburk SF, Wang QJ, Yue Z (2010) The Beclin 1–VPS34 complex–at the crossroads of autophagy and beyond. Trends Cell Biol 20:355–362CrossRefPubMedPubMedCentralGoogle Scholar
  13. Guarino M, Rubino B, Ballabio G (2007) The role of epithelial-mesenchymal transition in cancer pathology. Pathology 39:305–318CrossRefPubMedGoogle Scholar
  14. He C, Levine B (2010) The beclin 1 interactome. Curr Opin Cell Biol 22:140–149CrossRefPubMedPubMedCentralGoogle Scholar
  15. Hong QY, GM W, Qian GS, CP H, Zhou JY, Chen LA, Li WM, Li SY, Wang K, Wang Q, Zhang XJ, Li J, Gong X, Bai CX (2015) Prevention and management of lung cancer in China. Cancer 121(Suppl 17):3080–3088CrossRefPubMedGoogle Scholar
  16. Howlader N, Noone A, Krapcho M, Garshell J, Miller D, Altekruse S, Kosary C, Yu M, Ruhl J, Tatalovich Z (2015) SEER cancer statistics review, 1975–2012. National Cancer Institute, BethesdaGoogle Scholar
  17. Jemal A, Thun MJ, Ries LA, Howe HL, Weir HK, Center MM, Ward E, Wu X-C, Eheman C, Anderson R (2008) Annual report to the nation on the status of cancer, 1975–2005, featuring trends in lung cancer, tobacco use, and tobacco control. J Natl Cancer Inst 100:1672–1694CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kondo Y, Kanzawa T, Sawaya R, Kondo S (2005) The role of autophagy in cancer development and response to therapy. Nat Rev Cancer 5:726–734CrossRefPubMedGoogle Scholar
  19. Li Z, Chen B, Wu Y, Jin F, Xia Y, Liu X (2010) Genetic and epigenetic silencing of the beclin 1 gene in sporadic breast tumors. BMC Cancer 10:98CrossRefPubMedPubMedCentralGoogle Scholar
  20. Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, Levine B (1999) Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402:672–676CrossRefPubMedGoogle Scholar
  21. Liao H, Xiao Y, Hu Y, Xiao Y, Yin Z, Liu L, Kang X, Chen Y (2016) Methylation-induced silencing of miR-34a enhances chemoresistance by directly upregulating ATG4B-induced autophagy through AMPK/mTOR pathway in prostate cancer. Oncol Rep 35:64–72CrossRefPubMedGoogle Scholar
  22. Lv ZQ, Han JJ, Liu YQ, Wang LL, Tang QL, Sun Q, Li HG (2015) Expression of beclin 1 in non-small cell lung cancer: an immunohistochemical study. Clin Respir J 9:359–365CrossRefPubMedGoogle Scholar
  23. Noda T, Kim J, Huang W-P, Baba M, Tokunaga C, Ohsumi Y, Klionsky DJ (2000) Apg9p/Cvt7p is an integral membrane protein required for transport vesicle formation in the Cvt and autophagy pathways. J Cell Biol 148:465–480CrossRefPubMedPubMedCentralGoogle Scholar
  24. Nurnberg ST, Cheng K, Raiesdana A, Kundu R, Miller CL, Kim JB, Arora K, Carcamo-Oribe I, Xiong Y, Tellakula N (2015) Coronary artery disease associated transcription factor TCF21 regulates smooth muscle precursor cells that contribute to the fibrous cap. PLoS Genet 11:e1005155CrossRefPubMedPubMedCentralGoogle Scholar
  25. Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, Rosen J, Eskelinen EL, Mizushima N, Ohsumi Y, Cattoretti G, Levine B (2003) Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 112:1809–1820CrossRefPubMedPubMedCentralGoogle Scholar
  26. Quaggin SE, Schwartz L, Cui S, Igarashi P, Deimling J, Post M, Rossant J (1999) The basic-helix-loop-helix protein pod1 is critically important for kidney and lung organogenesis. Development 126:5771–5783PubMedGoogle Scholar
  27. Richards KL, Zhang B, Sun M, Dong W, Churchill J, Bachinski LL, Wilson CD, Baggerly KA, Yin G, Hayes DN (2011) Methylation of the candidate biomarker TCF21 is very frequent across a spectrum of early-stage nonsmall cell lung cancers. Cancer 117:606–617CrossRefPubMedGoogle Scholar
  28. Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66:7–30CrossRefPubMedGoogle Scholar
  29. Smith LT, Lin M, Brena RM, Lang JC, Schuller DE, Otterson GA, Morrison CD, Smiraglia DJ, Plass C (2006) Epigenetic regulation of the tumor suppressor gene TCF21 on 6q23-q24 in lung and head and neck cancer. Proc Natl Acad Sci U S A 103:982–987CrossRefPubMedPubMedCentralGoogle Scholar
  30. Thiery JP (2002) Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2:442–454CrossRefPubMedGoogle Scholar
  31. Tsou JA, Galler JS, Siegmund KD, Laird PW, Turla S, Cozen W, Hagen JA, Koss MN, Laird-Offringa IA (2007) Identification of a panel of sensitive and specific DNA methylation markers for lung adenocarcinoma. Mol Cancer 6:70CrossRefPubMedPubMedCentralGoogle Scholar
  32. Wang S, Dorsey TH, Terunuma A, Kittles RA, Ambs S, Kwabi-Addo B (2012) Relationship between tumor DNA methylation status and patient characteristics in African-American and European-American women with breast cancer. PLoS One 7:e37928CrossRefPubMedPubMedCentralGoogle Scholar
  33. Wang X, Du Z, Li L, Shi M, Yu Y (2015) Beclin 1 and p62 expression in non-small cell lung cancer: relation with malignant behaviors and clinical outcome. Int J Clin Exp Pathol 8:10644–10652PubMedPubMedCentralGoogle Scholar
  34. Yamamoto H, Kakuta S, Watanabe TM, Kitamura A, Sekito T, Kondo-Kakuta C, Ichikawa R, Kinjo M, Ohsumi Y (2012) Atg9 vesicles are an important membrane source during early steps of autophagosome formation. J Cell Biol 198:219–233CrossRefPubMedPubMedCentralGoogle Scholar
  35. Yang Z, Li DM, Xie Q, Dai DQ (2015) Protein expression and promoter methylation of the candidate biomarker TCF21 in gastric cancer. J Cancer Res Clin Oncol 141:211–220CrossRefPubMedGoogle Scholar
  36. Yue Z, Jin S, Yang C, Levine AJ, Heintz N (2003) Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci 100:15077–15082CrossRefPubMedPubMedCentralGoogle Scholar
  37. Zhou H, Yuan M, Yu Q, Zhou X, Min W, Gao D (2016) Autophagy regulation and its role in gastric cancer and colorectal cancer. Cancer Biomark 17:1–10CrossRefPubMedGoogle Scholar

Copyright information

© The International CCN Society 2017

Authors and Affiliations

  • Baokun Chen
    • 1
  • Chao Zeng
    • 1
  • Yiwang Ye
    • 1
  • Da Wu
    • 1
  • Zhimin Mu
    • 1
  • Jixian Liu
    • 1
  • Yuancai Xie
    • 1
  • Hao Wu
    • 1
    Email author
  1. 1.Department of Thoracic SurgeryPeking University Shenzhen HospitalShenzhenChina

Personalised recommendations