Advertisement

Journal of Cell Communication and Signaling

, Volume 12, Issue 3, pp 603–613 | Cite as

Sulfatase-1 knockdown promotes in vitro and in vivo aggressive behavior of murine hepatocarcinoma Hca-P cells through up-regulation of mesothelin

  • Salma Abdi Mahmoud
  • Mohammed Mohammed Ibrahim
  • Ahmed Hago Musa
  • Yuhong Huang
  • Jun Zhang
  • Jingwen Wang
  • Yuanyi Wei
  • Li Wang
  • Shunting Zhou
  • Boyi Xin
  • Wei Xuan
  • Jianwu Tang
Research Article

Abstract

Our previous study (Oncotarget 2016; 7:46) demonstrated that the over-expression of sulfatase-1 in murine hepatocarcinoma Hca-F cell line (a murine HCC cell with lymph node metastatic [LNM] rate of >75%) downregulates mesothelin and leads to reduction in lymphatic metastasis, both in vitro and in vivo. In current work, we investigated the effects of Sulf-1 knockdown on mesothelin (Msln) and it’s effects on the in vitro cell proliferation, migration, invasion, and in vivo tumor growth and LNM rate for Hca-P cells (a murine HCC cell with LNM rate of <25%). Western blotting and qRT-PCR assay indicated that both in vitro and in vivo Sulf-1 was down-regulated by 75% and 68% and led to up regulation of Msln by 55% in shRNA-transfected-Sulf-1-Hca-P cells compared with Hca-P and nonspecific sequence control plasmid transfected Hca-P cell (shRNA-Nc-Hca-P). The in vitro proliferation, migration and invasion potentials were significantly enhanced following Sulf-1 stable down-regulation. In addition, Sulf-1 knock-down significantly promoted tumor growth and increased LNM rates of shRNA-Sulf-1-Hca-P-transplanted mice by 78.6% (11 out of 14 lymph nodes were positive of cancer). Consistent with our previous work, we confirmed that Sulf-1 plays an important role in hepatocarcinoma cell proliferation, migration, invasion and metastasis. The interaction between Sulf-1 and Msln is a potential therapeutic target in the development of liver cancer therapy.

Keywords

Sulfatase-1 Mesothelin Hepatocellular carcinoma Migration and invasion Lymph node metastasis 

Notes

Funding

This work was supports by grants from the National Natural Science Foundation of China [No. 81071725 and No. 30772468]; and the Financial Department of Liaoning Province [Nos. 20,121,203]. We would like to thank the Department of Pathology and the Key Lab for Tumor Metastasis and Intervention of Liaoning Province, as well as, and the Chinese Scholarship Council (CSC).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. Akutsu N et al (2010) Association of glypican-3 expression with growth signaling molecules in hepatocellular carcinoma. World J Gastroenterol 16(28):3521–3528CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bao L et al (2013) MicroRNA-21 suppresses PTEN and hSulf-1 expression and promotes hepatocellular carcinoma progression through AKT/ERK pathways. Cancer Lett 337(2):226–236CrossRefPubMedGoogle Scholar
  3. Bayoglu IV et al (2015) Prognostic value of mesothelin expression in patients with triple negative and HER2-positive breast cancers. Biomed Pharmacother 70:190–195CrossRefPubMedGoogle Scholar
  4. Chang M-C et al (2009) Mesothelin inhibits paclitaxel-induced apoptosis through the PI3K pathway. Biochem J 424:449–458CrossRefPubMedGoogle Scholar
  5. Chuang PT, McMahon AP (1999) Vertebrate hedgehog signalling modulated by induction of a hedgehog-binding protein. Nature 397(6720):617–621CrossRefPubMedGoogle Scholar
  6. Chuang P-T, Kawcak T, McMahon AP (2003) Feedback control of mammalian hedgehog signaling by the hedgehog-binding protein, Hip1, modulates Fgf signaling during branching morphogenesis of the lung. Genes Dev 17(3):342–347CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cui XN et al (2006) Identification of differentially expressed genes in mouse hepatocarcinoma ascites cell line with low potential of lymphogenous metastasis. World J Gastroenterol 12(42):6893–6897CrossRefPubMedPubMedCentralGoogle Scholar
  8. Demir M et al (2016) Evaluation of new biomarkers in the prediction of malignant mesothelioma in subjects with environmental asbestos exposure. Lung 194(3):409–417CrossRefPubMedGoogle Scholar
  9. Dhanasekaran R et al (2015) Activation of the transforming growth factor-β/SMAD transcriptional pathway underlies a novel tumor-promoting role of sulfatase 1 in hepatocellular carcinoma. Hepatology 61(4):1269–1283CrossRefPubMedPubMedCentralGoogle Scholar
  10. Dieterich LC, Detmar M (2015) Tumor lymphangiogenesis and new drug development. Adv Drug Deliv Rev 99:148–160CrossRefPubMedGoogle Scholar
  11. Gibot L et al (2016) Cell-based approach for 3D reconstruction of lymphatic capillaries in vitro reveals distinct functions of HGF and VEGF-C in lymphangiogenesis. Biomaterials 78:129–139CrossRefPubMedGoogle Scholar
  12. Gopal G et al (2012) Endo-sulfatase Sulf-1 protein expression is down-regulated in gastric cancer. Asian Pac J Cancer Prev: APJCP 13(2):641–646 http://www.ncbi.nlm.nih.gov/pubmed/22524839 Accessed 20 March 2017CrossRefPubMedGoogle Scholar
  13. Hou L et al (2001) Molecular mechanism about lymphogenous metastasis of hepatocarcinoma cells in mice. World J Gastroenterol 7(4):532–536CrossRefPubMedPubMedCentralGoogle Scholar
  14. Huangfu D, Anderson KV (2006) Signaling from Smo to ci/Gli: conservation and divergence of hedgehog pathways from drosophila to vertebrates. Development 133(1):3–14CrossRefPubMedGoogle Scholar
  15. Katoh Y, Katoh M (2009) Hedgehog target genes: mechanisms of carcinogenesis induced by aberrant hedgehog signaling activation. Curr Mol Med 9(7):873–886CrossRefPubMedGoogle Scholar
  16. Khurana A et al (2011) HSulf-1 modulates FGF-2 and hypoxia mediated migration and invasion of breast cancer cells. Cancer Res 71(6):2152–2161CrossRefPubMedPubMedCentralGoogle Scholar
  17. Lai J, Chien J, Staub J, Avula R, Greene EL, Matthews TA, Smith DI, Kaufmann SH, Roberts LR, Shridhar V (2003) Loss of HSulf-1 up-regulates heparin-binding growth factor signaling in cancer. J Biol Chem 278(25):23107–23117CrossRefPubMedGoogle Scholar
  18. Lai JP, Chien J, Strome SE, Staub J, Montoya DP (2004a) HSulf-1 modulates HGF-mediated tumor cell invasion and signaling in head and neck squamous carcinoma. Oncogene 23(7):1439–1447CrossRefPubMedGoogle Scholar
  19. Lai, J. et al., 2004b. HSulf-1 modulates HGF-mediated tumor cell invasion and signaling in head and neck squamous carcinoma., (October 2003), pp. 1439–1447Google Scholar
  20. Lai JP et al (2008) The tumor suppressor function of human sulfatase 1 (SULF1) in carcinogenesis. J Gastrointest Cancer 39:149–158CrossRefPubMedGoogle Scholar
  21. Li HF, Ling MY, Xie Y, Xie H (1998) Establishment of a lymph node metastatic model of mouse hepatocellular carcinoma Hca-F cells in C3H/Hej mice. Oncol Res 10(11–12):569–573PubMedGoogle Scholar
  22. Li J et al (2005) Enhanced levels of Hsulf-1 interfere with heparin-binding growth factor signaling in pancreatic cancer. Mol Cancer 4:14CrossRefPubMedPubMedCentralGoogle Scholar
  23. Li J et al (2011) HSulf-1 inhibits cell proliferation and invasion in human gastric cancer. Cancer Sci 102(10):1815–1821CrossRefPubMedGoogle Scholar
  24. Liu H, Fu X, Ji W, Liu K, Bao L, Yan Y, Wu M, Yang J, Su C (2013) Human sulfatase-1 inhibits the migration and proliferation of SMMC-7721 hepatocellular carcinoma cells by downregulating the growth factor signaling. Hepatol Res 43(5):516–525CrossRefPubMedGoogle Scholar
  25. Liu L et al (2014) hSulf-1 inhibits cell proliferation and migration and promotes apoptosis by suppressing stat3 signaling in hepatocellular carcinoma. Oncol Lett 7:963–969CrossRefPubMedPubMedCentralGoogle Scholar
  26. Lou X et al (2016) Human sulfatase 1 exerts anti-tumor activity by inhibiting the AKT/CDK4 signaling pathway in melanoma. Oncotarget 7(51):84486–84495CrossRefPubMedPubMedCentralGoogle Scholar
  27. Ma H-Y et al (2011) HSulf-1 suppresses cell growth and down-regulates hedgehog signaling in human gastric cancer cells. Oncol Lett 2(6):1291–1295CrossRefPubMedPubMedCentralGoogle Scholar
  28. Mahmoud S et al (2016) Over expression of sulfatase-1 in murine hepatocarcinoma Hca-F cell line downregulates mesothelin and leads to reduction in lymphatic metastasis, both in vitro and in vivo. Oncotarget 7:46CrossRefGoogle Scholar
  29. Mondal S et al (2015) HSulf-1 deficiency dictates a metabolic reprograming of glycolysis and TCA cycle in ovarian cancer. Oncotarget 6(32):33705–33719CrossRefPubMedPubMedCentralGoogle Scholar
  30. Narita K, Chien J, Mullany SA, Staub J, Qian X, Lingle WL, Shridhar V (2007) Loss of HSulf-1 expression enhances autocrine signaling mediated by amphiregulin in breast cancer. J Biol Chem 282(19):14413–14420CrossRefPubMedGoogle Scholar
  31. Nathanson SD (2003) Insights into the mechanisms of lymph node metastasis, pp. 413–423Google Scholar
  32. Østerlund T, Kogerman P (2006) Hedgehog signalling: how to get from Smo to ci and Gli. Trends Cell Biol 16(4):176–180CrossRefPubMedGoogle Scholar
  33. Pascale RM, Calvisi DF, Feo F (2016) Sulfatase 1: a new Jekyll and Hyde in hepatocellular carcinoma? Transl Gastroenterol Hepatol 1:43–43CrossRefPubMedPubMedCentralGoogle Scholar
  34. Prieve, M.G. & Moon, R.T., 2003. Stromelysin-1 and mesothelin are differentially regulated by Wnt-5a and Wnt-1 in C57mg mouse mammary epithelial cells., 10, pp. 1–10Google Scholar
  35. Roy D et al (2014) Loss of HSulf-1 promotes altered lipid metabolism in ovarian cancer. Cancer Metab 2(1):13CrossRefPubMedPubMedCentralGoogle Scholar
  36. Song B, Tang JW, Wang B, Cui XN, Hou L, Sun L, Mao LM, Zhou CH, Du Y, Wang LH, Wang HX, Zheng RS, Sun L (2005) Identify lymphatic metastasis-associated genes in mouse hepatocarcinoma cell lines using gene chip. World J Gastroenterol 11(10):1463–1472CrossRefPubMedPubMedCentralGoogle Scholar
  37. Song PP et al (2016) Controversies regarding and perspectives on clinical utility of biomarkers in hepatocellular carcinoma. World J Gastroenterol 22(1):262–274CrossRefPubMedPubMedCentralGoogle Scholar
  38. Suvendu Das MS (2008) Lymphatic vessel activation in cancer. Ann N Y Acad Sci 1131:235–241CrossRefPubMedGoogle Scholar
  39. Szatmári T, Ötvös R, Hjerpe A, Dobra K (2015) Syndecan-1 in cancer: implications for cell signaling, differentiation, and prognostication. Dis Markers 2015:13CrossRefGoogle Scholar
  40. Tang Z, Qian M, Ho M (2013) The role of mesothelin in tumor progression and targeted therapy. Anti Cancer Agents Med Chem 13(2):276–280CrossRefGoogle Scholar
  41. Torre LA et al (2015) Global cancer statistics, 2012. CA Cancer J Clin 65(2):87–108CrossRefPubMedGoogle Scholar
  42. Vecsler M, Lazar I, Tzur A (2013) Using standard optical flow cytometry for synchronizing proliferating cells in the G1 phase. PloS One 8(12):e83935CrossRefPubMedPubMedCentralGoogle Scholar
  43. Wang Y et al (2012) Mesothelin promotes invasion and metastasis in breast cancer cells. J Int Med Res 40:2109–2116CrossRefPubMedGoogle Scholar
  44. Yang XP et al (2015) Human sulfatase-1 improves the effectiveness of cytosine deaminase suicide gene therapy with 5-fluorocytosine treatment on hepatocellular carcinoma cell line hepg2 in vitro and in vivo. Chin Med J 128(10):1384–1390CrossRefPubMedPubMedCentralGoogle Scholar
  45. Yoshimatsu Y, Miyazaki H, Watabe T (2016) Roles of signaling and transcriptional networks in pathological lymphangiogenesis ☆. Adv Drug Deliv Rev 99:161–171CrossRefPubMedGoogle Scholar
  46. Zhang H, Newman DR, Sannes PL (2012) HSULF-1 inhibits ERK and AKT signaling and decreases cell viability in vitro in human lung epithelial cells. Respir Res 13(1):69CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The International CCN Society 2017

Authors and Affiliations

  • Salma Abdi Mahmoud
    • 1
  • Mohammed Mohammed Ibrahim
    • 1
    • 2
  • Ahmed Hago Musa
    • 1
  • Yuhong Huang
    • 1
  • Jun Zhang
    • 1
  • Jingwen Wang
    • 1
  • Yuanyi Wei
    • 1
  • Li Wang
    • 1
  • Shunting Zhou
    • 1
  • Boyi Xin
    • 1
  • Wei Xuan
    • 1
  • Jianwu Tang
    • 1
  1. 1.Department of Pathology and Pathophysiology, Key laboratory for Tumor Metastasis and Intervention of Liaoning ProvinceDalian Medical UniversityDalianChina
  2. 2.Department of Pathology, School of Medicine and Health SciencesUniversity for Development StudiesTamaleGhana

Personalised recommendations