Journal of Cell Communication and Signaling

, Volume 11, Issue 4, pp 297–307 | Cite as

The stem cell factor (SCF)/c-KIT signalling in testis and prostate cancer

  • Henrique J. Cardoso
  • Marília I. Figueira
  • Sílvia SocorroEmail author
Research Article


The stem cell factor (SCF) is a cytokine that specifically binds the tyrosine kinase receptor c-KIT. The SCF/c-KIT interaction leads to receptor dimerization, activation of kinase activity and initiation of several signal transduction pathways that control cell proliferation, apoptosis, differentiation and migration in several tissues. The activity of SCF/c-KIT system is linked with the phosphatidylinositol 3-kinase (PI3-K), the Src, the Janus kinase/signal transducers and activators of transcription (JAK/STAT), the phospholipase-C (PLC-γ) and the mitogen-activated protein kinase (MAPK) pathways. Moreover, it has been reported that cancer cases display an overactivation of c-KIT due to the presence of gain-of-function mutations or receptor overexpression, which renders c-KIT a tempting target for cancer treatment. In the case of male cancers the most documented activated pathways are the PI3-K and Src, both enhancing abnormal cell proliferation. It is also known that the Src activity in prostate cancer cases depends on the presence of tr-KIT, the cytoplasmic truncated variant of c-KIT that is specifically expressed in tumour tissues and, thus, a very interesting target for drug development. The present review provides an overview of the signalling pathways activated by SCF/c-KIT and discusses the potential application of c-KIT inhibitors for treatment of testicular and prostatic cancers.


C-KIT KIT ligand Prostate cancer SCF Signalling Testicular cancer 



Extracellular-signal-regulated kinase




Growth factor receptor bound protein-2


Janus kinase


c-Jun N-terminal kinase


Mitogen-activated protein kinase


membrane-bound SCF


mammalian target of rapamycin


p70 S6 kinase


Phosphatidylinositol 3-kinase






Stem cell factor


Src homology 2


soluble SCF


Signal transducers and activators of transcription


truncated c-KIT protein



This work was supported by FEDER funds through the POCI - COMPETE 2020 - Operational Programme Competitiveness and Internationalisation in Axis I - Strengthening research, technological development and innovation (Project No. 007491) and National Funds by FCT-Foundation for Science and Technology (Project UID/Multi/00709/2013). Henrique Cardoso and Marília Figueira were funded by FCT fellowships (SFRH/BD/ 111351/2015 and SFRH/BD/104671/2014, respectively).

The authors confirm independence from the sponsors; the content of the article has not been influenced by the sponsors.


  1. Aksamitiene E, Kiyatkin A, Kholodenko BN (2012) Cross-talk between mitogenic Ras/MAPK and survival PI3K/Akt pathways: a fine balance. Biochem Soc Trans 40:139–146CrossRefPubMedGoogle Scholar
  2. Ali S, Ali S (2007) Role of c-kit/SCF in cause and treatment of gastrointestinal stromal tumors (GIST). Gene 401:38–45CrossRefPubMedGoogle Scholar
  3. Ashman LK, Griffith R (2013) Therapeutic targeting of c-KIT in cancer. Expert Opin Investig Drugs 22:103–115CrossRefPubMedGoogle Scholar
  4. Biermann K, Goke F, Nettersheim D, Eckert D, Zhou H, Kahl P, Gashaw I, Schorle H, Buttner R (2007) C-KIT is frequently mutated in bilateral germ cell tumours and down-regulated during progression from intratubular germ cell neoplasia to seminoma. J Pathol 213:311–318CrossRefPubMedGoogle Scholar
  5. Birnie R, Bryce SD, Roome C, Dussupt V, Droop A, Lang SH, Berry PA, Hyde CF, Lewis JL, Stower MJ, Maitland NJ, Collins AT (2008) Gene expression profiling of human prostate cancer stem cells reveals a pro-inflammatory phenotype and the importance of extracellular matrix interactions. Genome Biol 9:R83CrossRefPubMedPubMedCentralGoogle Scholar
  6. Blume-Jensen P, Hunter T (2001) Oncogenic kinase signalling. Nature 411:355–365Google Scholar
  7. Blume-Jensen P, Janknecht R, Hunter T (1998) The kit receptor promotes cell survival via activation of PI 3-kinase and subsequent Akt-mediated phosphorylation of bad on Ser136. Curr Biol 8:779–782CrossRefPubMedGoogle Scholar
  8. Capelli L, Petracci E, Quagliuolo V, Saragoni L, Colombo P, Morgagni P, Calistri D, Tomezzoli A, Di Cosmo M, Roviello F, Vindigni C, Coniglio A, Villanacci V, Catarci M, Coppola L, Alfieri S, Ricci R, Capella C, Rausei S, Gulino D, Amadori D, Ulivi P (2016) Gastric GISTs: analysis of c-kit, PDGFRA and BRAF mutations in relation to prognosis and clinical pathological characteristics of patients - a GIRCG study. European journal of surgical oncology: the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology 42:1206–1214CrossRefGoogle Scholar
  9. Cardoso HJ, Figueira MI, Correia S, Vaz CV, Socorro S (2014) The SCF/c-KIT system in the male: survival strategies in fertility and cancer. Mol Reprod Dev 81:1064–1079CrossRefPubMedGoogle Scholar
  10. Cardoso HJ, Vaz CV, Correia S, Figueira MI, Marques R, Maia CJ, Socorro S (2015) Paradoxical and contradictory effects of imatinib in two cell line models of hormone-refractory prostate cancer. Prostate 75:923–935CrossRefPubMedGoogle Scholar
  11. Caruana G, Cambareri AC, Ashman LK (1999) Isoforms of c-KIT differ in activation of signalling pathways and transformation of NIH3T3 fibroblasts. Oncogene 18:5573–5581CrossRefPubMedGoogle Scholar
  12. Ceder JA, Aalders TW, Schalken JA (2017) Label retention and stem cell marker expression in the developing and adult prostate identifies basal and luminal epithelial stem cell subpopulations. Stem Cell Res Ther 8:95CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chieffi P (2014) Recent advances in molecular and cell biology of testicular germ-cell tumors. Int Rev Cell Mol Biol 312:79–100CrossRefPubMedGoogle Scholar
  14. Coffey J, Linger R, Pugh J, Dudakia D, Sokal M, Easton DF, Timothy Bishop D, Stratton M, Huddart R, Rapley EA (2008) Somatic KIT mutations occur predominantly in seminoma germ cell tumors and are not predictive of bilateral disease: report of 220 tumors and review of literature. Genes, chromosomes & cancer 47:34–42CrossRefGoogle Scholar
  15. Corcoran NM, Costello AJ (2005) Combined low-dose imatinib mesylate and paclitaxel lack synergy in an experimental model of extra-osseous hormone-refractory prostate cancer. BJU Int 96:640–646CrossRefPubMedGoogle Scholar
  16. Dahlen DD, Lin NL, Liu YC, Broudy VC (2001) Soluble kit receptor blocks stem cell factor bioactivity in vitro. Leuk Res 25:413–421CrossRefPubMedGoogle Scholar
  17. Damaschke NA, Yang B, Bhusari S, Svaren JP, Jarrard DF (2013) Epigenetic susceptibility factors for prostate cancer with aging. Prostate 73:1721–1730CrossRefPubMedPubMedCentralGoogle Scholar
  18. De Miguel MP, Cheng L, Holland EC, Federspiel MJ, Donovan PJ (2002) Dissection of the c-kit signaling pathway in mouse primordial germ cells by retroviral-mediated gene transfer. Proc Natl Acad Sci U S A 99:10458–10463CrossRefPubMedPubMedCentralGoogle Scholar
  19. Deberry C, Mou S, Linnekin D (1997) Stat1 associates with c-kit and is activated in response to stem cell factor. Biochem J 327:73–80CrossRefPubMedPubMedCentralGoogle Scholar
  20. Derry JJ, Prins GS, Ray V, Tyner AL (2003) Altered localization and activity of the intracellular tyrosine kinase BRK/Sik in prostate tumor cells. Oncogene 22:4212–4220CrossRefPubMedGoogle Scholar
  21. Dhillon AS, Hagan S, Rath O, Kolch W (2007) MAP kinase signalling pathways in cancer. Oncogene 26:3279–3290CrossRefPubMedGoogle Scholar
  22. Di Lorenzo G, Autorino R, D'Armiento FP, Mignogna C, De Laurentiis M, De Sio M, D'Armiento M, Damiano R, Vecchio G, De Placido S (2004) Expression of proto-oncogene c-kit in high risk prostate cancer. European journal of surgical oncology: the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology 30:987–992CrossRefGoogle Scholar
  23. Dolci S, Pellegrini M, Di Agostino S, Geremia R, Rossi P (2001) Signaling through extracellular signal-regulated kinase is required for spermatogonial proliferative response to stem cell factor. J Biol Chem 276:40225–40233CrossRefPubMedGoogle Scholar
  24. Farini D, La Sala G, Tedesco M, De Felici M (2007) Chemoattractant action and molecular signaling pathways of kit ligand on mouse primordial germ cells. Dev Biol 306:572–583CrossRefPubMedGoogle Scholar
  25. Farooqi AA, Sarkar FH (2015) Overview on the complexity of androgen receptor-targeted therapy for prostate cancer. Cancer Cell Int 15:7CrossRefPubMedPubMedCentralGoogle Scholar
  26. Fayyaz S, Farooqi AA (2013) miRNA and TMPRSS2-ERG do not mind their own business in prostate cancer cells. Immunogenetics 65:315–332CrossRefPubMedGoogle Scholar
  27. Feng LX, Ravindranath N, Dym M (2000) Stem cell factor/c-kit up-regulates cyclin D3 and promotes cell cycle progression via the phosphoinositide 3-kinase/p70 S6 kinase pathway in spermatogonia. J Biol Chem 275:25572–25576CrossRefPubMedGoogle Scholar
  28. Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, Rosso S, Coebergh JW, Comber H, Forman D, Bray F (2013) Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer 49:1374–1403CrossRefPubMedGoogle Scholar
  29. Figueira MI, Cardoso HJ, Correia S, Maia CJ, Socorro S (2014) Hormonal regulation of c-KIT receptor and its ligand: implications for human infertility? Prog Histochem Cytochem 49:1–19CrossRefPubMedGoogle Scholar
  30. Filippou P, Ferguson JE 3rd, Nielsen ME (2016) Epidemiology of prostate and testicular cancer. Semin Interv Radiol 33:182–185CrossRefGoogle Scholar
  31. Fukao T, Yamada T, Tanabe M, Terauchi Y, Ota T, Takayama T, Asano T, Takeuchi T, Kadowaki T, Hata Ji J, Koyasu S (2002) Selective loss of gastrointestinal mast cells and impaired immunity in PI3K-deficient mice. Nat Immunol 3:295–304CrossRefPubMedGoogle Scholar
  32. Gommerman JL, Sittaro D, Klebasz NZ, Williams DA, Berger SA (2000) Differential stimulation of c-kit mutants by membrane-bound and soluble steel factor correlates with leukemic potential. Blood 96:3734–3742PubMedGoogle Scholar
  33. Hayes-Lattin B, Nichols CR (2009) Testicular cancer: a prototypic tumor of young adults. Semin Oncol 36:432–438CrossRefPubMedPubMedCentralGoogle Scholar
  34. Huang DY, Chao Y, Tai MH, Yu YH, Lin WW (2012) STI571 reduces TRAIL-induced apoptosis in colon cancer cells: c-Abl activation by the death receptor leads to stress kinase-dependent cell death. J Biomed Sci 19:35CrossRefPubMedPubMedCentralGoogle Scholar
  35. Imura M, Kojima Y, Kubota Y, Hamakawa T, Yasui T, Sasaki S, Hayashi Y, Kohri K (2012) Regulation of cell proliferation through a KIT-mediated mechanism in benign prostatic hyperplasia. Prostate 72:1506–1513CrossRefPubMedGoogle Scholar
  36. Izquierdo MA, Van der Valk P, Van Ark-Otte J, Rubio G, Germa-Lluch JR, Ueda R, Scheper RJ, Takahashi T, Giaccone G (1995) Differential expression of the c-kit proto-oncogene in germ cell tumours. J Pathol 177:253–258CrossRefPubMedGoogle Scholar
  37. Kapur R, Chandra S, Cooper R, McCarthy J, Williams DA (2002) Role of p38 and ERK MAP kinase in proliferation of erythroid progenitors in response to stimulation by soluble and membrane isoforms of stem cell factor. Blood 100:1287–1293PubMedGoogle Scholar
  38. Kemmer K, Corless CL, Fletcher JA, McGreevey L, Haley A, Griffith D, Cummings OW, Wait C, Town A, Heinrich MC (2004) KIT mutations are common in testicular seminomas. Am J Pathol 164:305–313CrossRefPubMedPubMedCentralGoogle Scholar
  39. Kerr IM, Costa-Pereira AP, Lillemeier BF, Strobl B (2003) Of JAKs, STATs, blind watchmakers, jeeps and trains. FEBS Lett 546:1–5CrossRefPubMedGoogle Scholar
  40. Klippel A, Escobedo JA, Hirano M, Williams LT (1994) The interaction of small domains between the subunits of phosphatidylinositol 3-kinase determines enzyme activity. Mol Cell Biol 14:2675–2685CrossRefPubMedPubMedCentralGoogle Scholar
  41. Koike T, Hirai K, Morita Y, Nozawa Y (1993) Stem cell factor-induced signal transduction in rat mast cells. Activation of phospholipase D but not phosphoinositide-specific phospholipase C in c-kit receptor stimulation J Immunol 151:359–366Google Scholar
  42. Kuang D, Zhao X, Xiao G, Ni J, Feng Y, Wu R, Wang G (2008) Stem cell factor/c-kit signaling mediated cardiac stem cell migration via activation of p38 MAPK. Basic Res Cardiol 103:265–273CrossRefPubMedGoogle Scholar
  43. Langley KE, Mendiaz EA, Liu N, Narhi LO, Zeni L, Parseghian CM, Clogston CL, Leslie I, Pope JA, Lu HS, Zsebo KM, Boone TC (1994) Properties of variant forms of human stem cell factor recombinantly expressed in Escherichia coli. Arch Biochem Biophys 311:55–61CrossRefPubMedGoogle Scholar
  44. Lemmon MA, Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell 141:1117–1134Google Scholar
  45. Lemmon MA, Pinchasi D, Zhou M, Lax I, Schlessinger J (1997) Kit receptor dimerization is driven by bivalent binding of stem cell factor. J Biol Chem 272:6311–6317CrossRefPubMedGoogle Scholar
  46. Lennartsson J, Ronnstrand L (2012) Stem cell factor receptor/c-kit: from basic science to clinical implications. Physiol Rev 92:1619–1649CrossRefPubMedGoogle Scholar
  47. Leong KG, Wang BE, Johnson L, Gao WQ (2008) Generation of a prostate from a single adult stem cell. Nature 456:804–808CrossRefPubMedGoogle Scholar
  48. Lin X, Aslam A, Attar R, Yaylim I, Qureshi MZ, Hasnain S, Qadir MI, and Farooqi AA (2016a) Signaling lansdscape of prostate cancer. Cellular and molecular biology (noisy-le-grand, France) 62:45-50Google Scholar
  49. Lin X, Farooqi AA, Qureshi MZ, Romero MA, Tabassum S, Ismail M (2016b) Prostate cancer stem cells: viewing signaling cascades at a finer resolution. Arch Immunol Ther Exp 64:217–223CrossRefGoogle Scholar
  50. Linnekin D, DeBerry CS, Mou S (1997a) Lyn associates with the juxtamembrane region of c-kit and is activated by stem cell factor in hematopoietic cell lines and normal progenitor cells. J Biol Chem 272:27450–27455CrossRefPubMedGoogle Scholar
  51. Linnekin D, Mou S, Deberry CS, Weiler SR, Keller JR, Ruscetti FW, Longo DL (1997b) Stem cell factor, the JAK-STAT pathway and signal transduction. Leuk Lymphoma 27:439–444CrossRefPubMedGoogle Scholar
  52. Lipton A, Campbell-Baird C, Harvey H, Kim C, Demers L, Costa L (2010) Phase I trial of zoledronic acid + imatinib mesylate (Gleevec) in patients with bone metastases. Am J Clin Oncol 33:75–78CrossRefPubMedGoogle Scholar
  53. Maddens S, Charruyer A, Plo I, Dubreuil P, Berger S, Salles B, Laurent G, Jaffrezou JP (2002) Kit signaling inhibits the sphingomyelin-ceramide pathway through PLC gamma 1: implication in stem cell factor radioprotective effect. Blood 100:1294–1301PubMedGoogle Scholar
  54. Mansuroglu T, Ramadori P, Dudas J, Malik I, Hammerich K, Fuzesi L, Ramadori G (2009) Expression of stem cell factor and its receptor c-kit during the development of intrahepatic cholangiocarcinoma. Lab Investig 89:562–574CrossRefPubMedGoogle Scholar
  55. Maruyama IN (2014) Mechanisms of activation of receptor tyrosine kinases: monomers or dimers. Cells 3:304–330Google Scholar
  56. Mathew P, Thall PF, Jones D, Perez C, Bucana C, Troncoso P, Kim SJ, Fidler IJ, Logothetis C (2004) Platelet-derived growth factor receptor inhibitor imatinib mesylate and docetaxel: a modular phase I trial in androgen-independent prostate cancer. J Clin Oncol 22:3323–3329CrossRefPubMedGoogle Scholar
  57. Mitchell SG, Bunting ST, Saxe D, Olson T, and Keller FG (2017) A variant c-KIT mutation, D816H, fundamental to the sequential development of an ovarian mixed germ cell tumor and systemic mastocytosis with chronic myelomonocytic leukemia. Pediatric blood & cancer 64Google Scholar
  58. Miyazawa K, Williams DA, Gotoh A, Nishimaki J, Broxmeyer HE, Toyama K (1995) Membrane-bound steel factor induces more persistent tyrosine kinase activation and longer life span of c-kit gene-encoded protein than its soluble form. Blood 85:641–649PubMedGoogle Scholar
  59. Mol CD, Lim KB, Sridhar V, Zou H, Chien EY, Sang BC, Nowakowski J, Kassel DB, Cronin CN, McRee DE (2003) Structure of a c-kit product complex reveals the basis for kinase transactivation. J Biol Chem 278:31461–31464CrossRefPubMedGoogle Scholar
  60. Montero JC, Lopez-Perez R, San Miguel JF, Pandiella A (2008) Expression of c-kit isoforms in multiple myeloma: differences in signaling and drug sensitivity. Haematologica 93:851–859CrossRefPubMedGoogle Scholar
  61. Mou S, Linnekin D (1999) Lyn is activated during late G1 of stem-cell-factor-induced cell cycle progression in haemopoietic cells. Biochem J 342(Pt 1):163–170PubMedPubMedCentralGoogle Scholar
  62. Nabhan C, Villines D, Valdez TV, Tolzien K, Lestingi TM, Bitran JD, Christner SM, Egorin MJ, Beumer JH (2012) Phase I study investigating the safety and feasibility of combining imatinib mesylate (Gleevec) with sorafenib in patients with refractory castration-resistant prostate cancer. Br J Cancer 107:592–597CrossRefPubMedPubMedCentralGoogle Scholar
  63. Nakai Y, Nonomura N, Oka D, Shiba M, Arai Y, Nakayama M, Inoue H, Nishimura K, Aozasa K, Mizutani Y, Miki T, Okuyama A (2005) KIT (c-kit oncogene product) pathway is constitutively activated in human testicular germ cell tumors. Biochem Biophys Res Commun 337:289–296CrossRefPubMedGoogle Scholar
  64. Nishida K, Wang L, Morii E, Park SJ, Narimatsu M, Itoh S, Yamasaki S, Fujishima M, Ishihara K, Hibi M, Kitamura Y, Hirano T (2002) Requirement of Gab2 for mast cell development and KitL/c-kit signaling. Blood 99:1866–1869CrossRefPubMedGoogle Scholar
  65. O'Laughlin-Bunner B, Radosevic N, Taylor ML, Shivakrupa DBC, Metcalfe DD, Zhou M, Lowell C, Linnekin D (2001) Lyn is required for normal stem cell factor-induced proliferation and chemotaxis of primary hematopoietic cells. Blood 98:343–350CrossRefPubMedGoogle Scholar
  66. Paronetto MP, Venables JP, Elliott DJ, Geremia R, Rossi P, Sette C (2003) Tr-kit promotes the formation of a multimolecular complex composed by Fyn, PLCgamma1 and Sam68. Oncogene 22:8707–8715CrossRefPubMedGoogle Scholar
  67. Paronetto MP, Farini D, Sammarco I, Maturo G, Vespasiani G, Geremia R, Rossi P, Sette C (2004) Expression of a truncated form of the c-kit tyrosine kinase receptor and activation of Src kinase in human prostatic cancer. Am J Pathol 164:1243–1251CrossRefPubMedPubMedCentralGoogle Scholar
  68. Paulhe F, Wehrle-Haller M, Jacquier MC, Imhof BA, Tabone-Eglinger S, Wehrle-Haller B (2009) Dimerization of kit-ligand and efficient cell-surface presentation requires a conserved Ser-Gly-Gly-Tyr motif in its transmembrane domain. FASEB journal: official publication of the Federation of American Societies for Experimental Biology 23:3037–3048CrossRefGoogle Scholar
  69. Pedersini R, Vattemi E, Mazzoleni G, Graiff C (2007) Complete response after treatment with imatinib in pretreated disseminated testicular seminoma with overexpression of c-KIT. Lancet Oncol 8:1039–1040CrossRefPubMedGoogle Scholar
  70. Peng Y, Chen Q, Gu M, Chen Y, Zhang M, Zhou J, Wang H, Gao Y, Li W, Wang Z, Cai Z (2015) Human stromal cells in the peripheral zone of the prostate promote tumorigenesis of prostatic cancer stem cells through up-regulation of C-kit expression. J Cancer 6:776–785CrossRefPubMedPubMedCentralGoogle Scholar
  71. Phung B, Steingrimsson E, Ronnstrand L (2013) Differential activity of c-KIT splice forms is controlled by extracellular peptide insert length. Cell Signal 25:2231–2238CrossRefPubMedGoogle Scholar
  72. Piao X, Bernstein A (1996) A point mutation in the catalytic domain of c-kit induces growth factor independence, tumorigenicity, and differentiation of mast cells. Blood 87:3117–3123PubMedGoogle Scholar
  73. Pinto AC, Angelo S, Moreira JN, Simoes S (2011) Schedule treatment design and quantitative in vitro evaluation of chemotherapeutic combinations for metastatic prostate cancer therapy. Cancer Chemother Pharmacol 67:275–284CrossRefPubMedGoogle Scholar
  74. Price DJ, Rivnay B, Fu Y, Jiang S, Avraham S, Avraham H (1997) Direct association of Csk homologous kinase (CHK) with the diphosphorylated site Tyr568/570 of the activated c-KIT in megakaryocytes. J Biol Chem 272:5915–5920CrossRefPubMedGoogle Scholar
  75. Rapley EA, Hockley S, Warren W, Johnson L, Huddart R, Crockford G, Forman D, Leahy MG, Oliver DT, Tucker K, Friedlander M, Phillips KA, Hogg D, Jewett MA, Lohynska R, Daugaard G, Richard S, Heidenreich A, Geczi L, Bodrogi I, Olah E, Ormiston WJ, Daly PA, Looijenga LH, Guilford P, Aass N, Fossa SD, Heimdal K, Tjulandin SA, Liubchenko L, Stoll H, Weber W, Einhorn L, Weber BL, McMaster M, Greene MH, Bishop DT, Easton D, Stratton MR (2004) Somatic mutations of KIT in familial testicular germ cell tumours. Br J Cancer 90:2397–2401CrossRefPubMedPubMedCentralGoogle Scholar
  76. Robinson DR, Wu YM, Lin SF (2000) The protein tyrosine kinase family of the human genome Oncogene 19:5548–5557Google Scholar
  77. Ronnstrand L (2004) Signal transduction via the stem cell factor receptor/c-kit. Cell Mol Life Sci 61:2535–2548CrossRefPubMedGoogle Scholar
  78. Rossi P, Marziali G, Albanesi C, Charlesworth A, Geremia R, Sorrentino V (1992) A novel c-kit transcript, potentially encoding a truncated receptor, originates within a kit gene intron in mouse spermatids. Dev Biol 152:203–207CrossRefPubMedGoogle Scholar
  79. Ryan JJ, Huang H, McReynolds LJ, Shelburne C, Hu-Li J, Huff TF, Paul WE (1997) Stem cell factor activates STAT-5 DNA binding in IL-3-derived bone marrow mast cells. Exp Hematol 25:357–362PubMedGoogle Scholar
  80. Sakuma Y, Sakurai S, Oguni S, Hironaka M, Saito K (2003) Alterations of the c-kit gene in testicular germ cell tumors. Cancer Sci 94:486–491CrossRefPubMedGoogle Scholar
  81. Samayawardhena LA, Kapur R, Craig AW (2007) Involvement of Fyn kinase in kit and integrin-mediated Rac activation, cytoskeletal reorganization, and chemotaxis of mast cells. Blood 109:3679–3686CrossRefPubMedPubMedCentralGoogle Scholar
  82. Schnabel D, Ramirez L, Gertsenstein M, Nagy A, Lomeli H (2005) Ectopic expression of KitD814Y in spermatids of transgenic mice, interferes with sperm morphogenesis. Developmental dynamics: an official publication of the American Association of Anatomists 233:29–40CrossRefGoogle Scholar
  83. Segaliny AI, Tellez-Gabriel M, Heymann MF, Heymann D (2015) Receptor tyrosine kinases: Characterisation, mechanism of action and therapeutic interests for bone cancers. Journal of Bone Oncology 4:1–12Google Scholar
  84. Serve H, Hsu YC, Besmer P (1994) Tyrosine residue 719 of the c-kit receptor is essential for binding of the P85 subunit of phosphatidylinositol (PI) 3-kinase and for c-kit-associated PI 3-kinase activity in COS-1 cells. J Biol Chem 269:6026–6030PubMedGoogle Scholar
  85. Serve H, Yee NS, Stella G, Sepp-Lorenzino L, Tan JC, Besmer P (1995) Differential roles of PI3-kinase and kit tyrosine 821 in kit receptor-mediated proliferation, survival and cell adhesion in mast cells. EMBO J 14:473–483PubMedPubMedCentralGoogle Scholar
  86. Sette C, Bevilacqua A, Geremia R, Rossi P (1998) Involvement of phospholipase Cgamma1 in mouse egg activation induced by a truncated form of the C-kit tyrosine kinase present in spermatozoa. J Cell Biol 142:1063–1074CrossRefPubMedPubMedCentralGoogle Scholar
  87. Sette C, Paronetto MP, Barchi M, Bevilacqua A, Geremia R, Rossi P (2002) Tr-kit-induced resumption of the cell cycle in mouse eggs requires activation of a Src-like kinase. EMBO J 21:5386–5395CrossRefPubMedPubMedCentralGoogle Scholar
  88. Thommes K, Lennartsson J, Carlberg M, Ronnstrand L (1999) Identification of Tyr-703 and Tyr-936 as the primary association sites for Grb2 and Grb7 in the c-kit/stem cell factor receptor. Biochem J 341(Pt 1):211–216CrossRefPubMedPubMedCentralGoogle Scholar
  89. Tian Q, Frierson HF Jr, Krystal GW, Moskaluk CA (1999) Activating c-kit gene mutations in human germ cell tumors. Am J Pathol 154:1643–1647CrossRefPubMedPubMedCentralGoogle Scholar
  90. Tiffany NM, Wersinger EM, Garzotto M, Beer TM (2004) Imatinib mesylate and zoledronic acid in androgen-independent prostate cancer. Urology 63:934–939CrossRefPubMedGoogle Scholar
  91. Todd JR, Becker TM, Kefford RF, Rizos H (2013) Secondary c-kit mutations confer acquired resistance to RTK inhibitors in c-kit mutant melanoma cells. Pigment Cell Melanoma Res 26:518–526CrossRefPubMedGoogle Scholar
  92. Tulina N, Matunis E (2001) Control of stem cell self-renewal in drosophila spermatogenesis by JAK-STAT signaling. Science 294:2546–2549CrossRefPubMedGoogle Scholar
  93. Verstraete K, Savvides SN (2012) Extracellular assembly and activation principles of oncogenic class III receptor tyrosine kinases. Nat Rev Cancer 12:753–766Google Scholar
  94. Voytyuk O, Lennartsson J, Mogi A, Caruana G, Courtneidge S, Ashman LK, Ronnstrand L (2003) Src family kinases are involved in the differential signaling from two splice forms of c-kit. J Biol Chem 278:9159–9166CrossRefPubMedGoogle Scholar
  95. Wandzioch E, Edling CE, Palmer RH, Carlsson L, Hallberg B (2004) Activation of the MAP kinase pathway by c-kit is PI-3 kinase dependent in hematopoietic progenitor/stem cell lines. Blood 104:51–57CrossRefPubMedGoogle Scholar
  96. Weiler SR, Mou S, DeBerry CS, Keller JR, Ruscetti FW, Ferris DK, Longo DL, Linnekin D (1996) JAK2 is associated with the c-kit proto-oncogene product and is phosphorylated in response to stem cell factor. Blood 87:3688–3693PubMedGoogle Scholar
  97. Williams DE, Eisenman J, Baird A, Rauch C, Van Ness K, March CJ, Park LS, Martin U, Mochizuki DY, Boswell HS, Burgess GS, Cosma D, Stewart DL (1990) Identification of a ligand for the c-kit proto-oncogene. Cell 63:167–174CrossRefPubMedGoogle Scholar
  98. Willmore-Payne C, Holden JA, Chadwick BE, Layfield LJ (2006) Detection of c-kit exons 11- and 17-activating mutations in testicular seminomas by high-resolution melting amplicon analysis. Modern pathology: an official journal of the United States and Canadian Academy of Pathology, Inc 19:1164–1169CrossRefGoogle Scholar
  99. Wu P, Cao Z, Wu S (2016) New Progress of Epigenetic Biomarkers in Urological Cancer 2016:9864047Google Scholar
  100. Yarden Y, Kuang WJ, Yang-Feng T, Coussens L, Munemitsu S, Dull TJ, Chen E, Schlessinger J, Francke U, Ullrich A (1987) Human proto-oncogene c-kit: a new cell surface receptor tyrosine kinase for an unidentified ligand. EMBO J 6:3341–3351PubMedPubMedCentralGoogle Scholar
  101. Yun E-J, Lo UG, Hsieh J-T (2016) The evolving landscape of prostate cancer stem cell: therapeutic implications and future challenges. Asian Journal of Urology 3:203–210CrossRefGoogle Scholar
  102. Zhang Z, Zhang R, Joachimiak A, Schlessinger J, Kong XP (2000) Crystal structure of human stem cell factor: implication for stem cell factor receptor dimerization and activation. Proc Natl Acad Sci U S A 97:7732–7737CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The International CCN Society 2017

Authors and Affiliations

  1. 1.CICS-UBI, Centro de Investigação em Ciências da SaúdeUniversidade da Beira InteriorCovilhãPortugal

Personalised recommendations