Journal of Cell Communication and Signaling

, Volume 10, Issue 3, pp 191–196 | Cite as

Crosstalk in skin: melanocytes, keratinocytes, stem cells, and melanoma

  • Joshua X. Wang
  • Mizuho Fukunaga-Kalabis
  • Meenhard Herlyn
Review

Abstract

In the vertebrate embryo, melanocytes arise from the neural crest, migrate to and colonize the basal layer within the skin and skin appendages. Post-migratory melanocytes are securely attached to the basement membrane, and their morphology, growth, adhesion, and migration are under control of neighboring keratinocytes. Melanoma is a malignant tumor originated from melanocytes or their progenitor cells. During melanocyte transformation and melanoma progression, melanocytes lose their interactions with keratinocytes, resulting in uncontrolled proliferation and invasion of the malignant cells. Melanoma cells at the advanced stages often lack melanocytic features and resemble multipotent progenitors, which are a potential melanocyte reservoir in human skin. In this mini-review, we will summarize findings on cell-cell interactions that are responsible for normal melanocyte homeostasis, stem cell self-renewal, and differentiation. Our ultimate goal is to define molecules and pathways, which are essential for normal cell-cell interactions but deregulated in melanoma formation and progression.

Keywords

Melanocyte Melanoma Stem cell Keratiocyte Cell-cell interaction 

References

  1. Ando H, Niki Y, Ito M, Akiyama K, Matsui MS, Yarosh DB, et al. (2012) Melanosomes are transferred from melanocytes to keratinocytes through the processes of packaging, release, uptake, and dispersion. J Investig Dermatol 132(4):1222–1229CrossRefPubMedGoogle Scholar
  2. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, et al. (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364(26):2507–2516CrossRefPubMedPubMedCentralGoogle Scholar
  3. Cohen C, Zavala-Pompa A, Sequeira JH, Shoji M, Sexton DG, Cotsonis G, et al. (2002) Mitogen-actived protein kinase activation is an early event in melanoma progression. Clin Cancer Res 8(12):3728–3733PubMedGoogle Scholar
  4. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. (2002) Mutations of the BRAF gene in human cancer. Nature 417(6892):949–954CrossRefPubMedGoogle Scholar
  5. Elgarhy LH, Abdullatif A, Abdelazim R, El-Desouky KI Discoidin domain receptor-1 as a player in impairement of melanocytes adhesion process in vitiligo. Giornale italiano di dermatologia e venereologia: organo ufficiale, Societa italiana di dermatologia e sifilografia 2015Google Scholar
  6. Fernandes KJ, McKenzie IA, Mill P, Smith KM, Akhavan M, Barnabe-Heider F, et al. (2004) A dermal niche for multipotent adult skin-derived precursor cells. Nat Cell Biol 6(11):1082–1093CrossRefPubMedGoogle Scholar
  7. Fitzpatrick TB, Breathnach AS (1963) [The epidermal melanin unit system]. Dermatol Wochenschr 147:481–489PubMedGoogle Scholar
  8. Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA, et al. (2010) Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 363(9):809–819CrossRefPubMedPubMedCentralGoogle Scholar
  9. Fukunaga-Kalabis M, Martinez G, Liu ZJ, Kalabis J, Mrass P, Weninger W, et al. (2006) CCN3 controls 3D spatial localization of melanocytes in the human skin through DDR1. J Cell Biol 175(4):563–569CrossRefPubMedPubMedCentralGoogle Scholar
  10. Fukunaga-Kalabis M, Martinez G, Telson SM, Liu ZJ, Balint K, Juhasz I, et al. (2008) Downregulation of CCN3 expression as a potential mechanism for melanoma progression. Oncogene 27(18):2552–2560CrossRefPubMedGoogle Scholar
  11. Fukunaga-Kalabis M, Hristova DM, Wang JX, Li L, Heppt MV, Wei Z, et al. (2015) UV-Induced Wnt7a in the human skin microenvironment specifies the fate of neural crest-like cells via suppression of notch. J Investig Dermatol 135(6):1521–1532CrossRefPubMedPubMedCentralGoogle Scholar
  12. Goodson AG, Grossman D (2009) Strategies for early melanoma detection: approaches to the patient with nevi. J Am Acad Dermatol 60(5):719–735 quiz 36–8CrossRefPubMedPubMedCentralGoogle Scholar
  13. Haass NK, Herlyn M (2005) Normal human melanocyte homeostasis as a paradigm for understanding melanoma. J Investig Dermatol Symp Proc 10(2):153–163CrossRefPubMedGoogle Scholar
  14. Hachiya A, Kobayashi A, Yoshida Y, Kitahara T, Takema Y, Imokawa G (2004) Biphasic expression of two paracrine melanogenic cytokines, stem cell factor and endothelin-1, in ultraviolet B-induced human melanogenesis. Am J Pathol 165(6):2099–2109CrossRefPubMedPubMedCentralGoogle Scholar
  15. Halaban R (1994) Signal transduction in normal and malignant melanocytes. Pigment cell research / sponsored by the European Society for Pigment Cell Research and the International Pigment Cell Society 7(2):89–95CrossRefGoogle Scholar
  16. Harris JE (2016) Cellular stress and innate inflammation in organ-specific autoimmunity: lessons learned from vitiligo. Immunological Reviews 269(1):11–25Google Scholar
  17. Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723CrossRefPubMedPubMedCentralGoogle Scholar
  18. Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M, Theurillat JP, et al. (2012) A landscape of driver mutations in melanoma. Cell 150(2):251–263CrossRefPubMedPubMedCentralGoogle Scholar
  19. Imokawa G, Yada Y, Miyagishi M (1992) Endothelins secreted from human keratinocytes are intrinsic mitogens for human melanocytes. J Biol Chem 267(34):24675–24680PubMedGoogle Scholar
  20. Johannessen CM, Boehm JS, Kim SY, Thomas SR, Wardwell L, Johnson LA, et al. (2010) COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature 468(7326):968–U370CrossRefPubMedPubMedCentralGoogle Scholar
  21. Krengel S, Stark I, Geuchen C, Knoppe B, Scheel G, Schlenke P, et al. (2005) Selective down-regulation of the alpha6-integrin subunit in melanocytes by UVB light. Exp Dermatol 14(6):411–419CrossRefPubMedGoogle Scholar
  22. Li L, Fukunaga-Kalabis M, Yu H, Xu X, Kong J, Lee JT, et al. (2010) Human dermal stem cells differentiate into functional epidermal melanocytes. J Cell Sci 123(Pt 6):853–860CrossRefPubMedPubMedCentralGoogle Scholar
  23. Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, van der Horst CM, et al. (2005) BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436(7051):720–724CrossRefPubMedGoogle Scholar
  24. Nasti TH, Timares L (2012) Inflammasome activation of IL-1 family mediators in response to cutaneous photodamage. Photochem Photobiol 88(5):1111–1125CrossRefPubMedPubMedCentralGoogle Scholar
  25. Nazarian R, Shi H, Wang Q, Kong X, Koya RC, Lee H, et al. (2010) Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 468(7326):973–977CrossRefPubMedPubMedCentralGoogle Scholar
  26. Nishimura EK, Jordan SA, Oshima H, Yoshida H, Osawa M, Moriyama M, et al. (2002) Dominant role of the niche in melanocyte stem-cell fate determination. Nature 416(6883):854–860CrossRefPubMedGoogle Scholar
  27. Perica K, Varela JC, Oelke M, Schneck J (2015) Adoptive T cell immunotherapy for cancer. Rambam Maimonides Med J 6(1):e0004CrossRefPubMedPubMedCentralGoogle Scholar
  28. Rabbani P, Takeo M, Chou W, Myung P, Bosenberg M, Chin L, et al. (2011) Coordinated activation of Wnt in epithelial and melanocyte stem cells initiates pigmented hair regeneration. Cell 145(6):941–955CrossRefPubMedPubMedCentralGoogle Scholar
  29. Reichert-Faria A, Jung JE, Moreschi Neto V, de Castro CC, Mira MT, Noronha L (2013) Reduced immunohistochemical expression of Discoidin Domain Receptor 1 (DDR1) in vitiligo skin. J Eur Acad Dermatol Venereolo: JEADV 27(8):1057–1059CrossRefPubMedGoogle Scholar
  30. Ricard AS, Pain C, Daubos A, Ezzedine K, Lamrissi-Garcia I, Bibeyran A, et al. (2012) Study of CCN3 (NOV) and DDR1 in normal melanocytes and vitiligo skin. Exp Dermatol 21(6):411–416CrossRefPubMedGoogle Scholar
  31. Robert C, Ribas A, Wolchok JD, Hodi FS, Hamid O, Kefford R, et al. (2014) Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet 384(9948):1109–1117CrossRefPubMedGoogle Scholar
  32. Roh MR, Eliades P, Gupta S, Tsao H (2015) Genetics of melanocytic nevi. Pigment Cell Melanoma Res 28(6):661–672CrossRefPubMedGoogle Scholar
  33. Shih IM, Elder DE, Hsu MY, Herlyn M (1994) Regulation of Mel-CAM/MUC18 expression on melanocytes of different stages of tumor progression by normal keratinocytes. Am J Pathol 145(4):837–845PubMedPubMedCentralGoogle Scholar
  34. Silva de Castro CC, do Nascimento LM, Walker G, Werneck RI, Nogoceke E, Mira MT (2010) Genetic variants of the DDR1 gene are associated with vitiligo in two independent Brazilian population samples. J Investig Dermatol 130(7):1813–1818CrossRefPubMedGoogle Scholar
  35. Yamada T, Hasegawa S, Inoue Y, Date Y, Yamamoto N, Mizutani H, Nakata S, Matsunaga K, Akamatsu H (2013) Wnt/β-catenin and kit signaling sequentially regulate melanocyte stem cell differentiation in UVB-induced epidermal pigmentation. J Invest Dermatol 133(12):2753–2762Google Scholar
  36. Tanimura S, Tadokoro Y, Inomata K, Binh NT, Nishie W, Yamazaki S, et al. (2011) Hair follicle stem cells provide a functional niche for melanocyte stem cells. Cell Stem Cell 8(2):177–187CrossRefPubMedGoogle Scholar
  37. Toma JG, Akhavan M, Fernandes KJ, Barnabe-Heider F, Sadikot A, Kaplan DR, et al. (2001) Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol 3(9):778–784CrossRefPubMedGoogle Scholar
  38. Toma JG, McKenzie IA, Bagli D, Miller FD (2005) Isolation and characterization of multipotent skin-derived precursors from human skin. Stem Cells 23(6):727–737CrossRefPubMedGoogle Scholar
  39. Vallacchi V, Daniotti M, Ratti F, Di Stasi D, Deho P, De Filippo A, et al. (2008) CCN3/nephroblastoma overexpressed matricellular protein regulates integrin expression, adhesion, and dissemination in melanoma. Cancer Res 68(3):715–723CrossRefPubMedGoogle Scholar
  40. Valyinagy IT, Hirka G, Jensen PJ, Shih IM, Juhasz I, Herlyn M (1993) Undifferentiated keratinocytes control growth, morphology, and antigen expression of normal melanocytes through cell-cell contact. Lab Investig 69(2):152–159Google Scholar
  41. Valyi-Nagy IT, Hirka G, Jensen PJ, Shih IM, Juhasz I, Herlyn M (1993) Undifferentiated keratinocytes control growth, morphology, and antigen expression of normal melanocytes through cell-cell contact. Lab Invest 69(2):152–159Google Scholar
  42. van Elsas A, Zerp S, van der Flier S, Kruse-Wolters M, Vacca A, Ruiter DJ, et al. (1995) Analysis of N-ras mutations in human cutaneous melanoma: tumor heterogeneity detected by polymerase chain reaction/single-stranded conformation polymorphism analysis. Recent Results Cancer Res 139:57–67CrossRefPubMedGoogle Scholar
  43. Wan PT, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz D, Good VM, et al. (2004) Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116(6):855–867CrossRefPubMedGoogle Scholar
  44. Weber JS, O’Day S, Urba W, Powderly J, Nichol G, Yellin M, et al. (2008) Phase I/II study of ipilimumab for patients with metastatic melanoma. J Clin Oncol 26(36):5950–5956CrossRefPubMedGoogle Scholar
  45. Yaar M, Gilchrest BA (1991) Human melanocyte growth and differentiation: a decade of new data. J Investig Dermatol 97(4):611–617CrossRefPubMedGoogle Scholar
  46. Zabierowski SE, Fukunaga-Kalabis M, Li L, Herlyn M (2011) Dermis-derived stem cells: a source of epidermal melanocytes and melanoma? Pigment Cell Melanoma Res 24(3):422–429CrossRefPubMedGoogle Scholar
  47. Zaretsky JM, Garcia-Diaz A, Shin DS, Escuin-Ordinas H, Hugo W, Hu-Lieskovan S, et al. (2016) Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med. doi:10.1056/NEJMoa1604958

Copyright information

© The International CCN Society 2016

Authors and Affiliations

  1. 1.The Wistar InstitutePhiladelphiaUSA

Personalised recommendations