Journal of Cell Communication and Signaling

, Volume 10, Issue 3, pp 207–216 | Cite as

Human pancreatic cancer progression: an anarchy among CCN-siblings

  • Sushanta K. Banerjee
  • Gargi Maity
  • Inamul Haque
  • Arnab Ghosh
  • Sandipto Sarkar
  • Vijayalaxmi Gupta
  • Donald R. Campbell
  • Daniel Von Hoff
  • Snigdha Banerjee


Decades of basic and translational studies have identified the mechanisms by which pancreatic cancer cells use molecular pathways to hijack the normal homeostasis of the pancreas, promoting pancreatic cancer initiation, progression, and metastasis, as well as drug resistance. These molecular pathways were explored to develop targeted therapies to prevent or cure this fatal disease. Regrettably, the studies found that majority of the molecular events that dictate carcinogenic growth in the pancreas are non-actionable (potential non-responder groups of targeted therapy). In this review we discuss exciting discoveries on CCN-siblings that reveal how CCN-family members contribute to the different aspects of the development of pancreatic cancer with special emphasis on therapy.


CCN1 CCN2 CCN3 CCN4 CCN5 Pancreatic cancer Patient derived xenograft Genetically engineered mice model 



We would like to thank other members of our cancer research unit for valuable and helpful comments on this manuscript. We would also like to thank LaCoiya Harris for editing and organizing this manuscript. This work was supported by the Kansas City Area Life Science grant award (SKB), Merit review grant from Department of Veterans Affairs (SKB, 5I01BX001989-03 and SB,1I01BX001002-04), and KUMC Van Goethem Family Endowed Funds (SKB).

Author contributions

Snigdha Banerjee and Sushanta K. Banerjee performed the literature search and wrote the manuscript. Inamul Haque, Gargi Maity, Vijayalaxmi Gupta, Sandipto Sarkar and Arnab Ghosh revised it critically for important intellectual content. Donald Campbell and Daniel Von Hoff provided expert comments and editing.

Compliance with ethical standards

Conflicts of interest

The authors declare no conflict of interest.


  1. Abraham SC, Wilentz RE, Yeo CJ, Sohn TA, Cameron JL, Boitnott JK, Hruban RH (2003) Pancreaticoduodenectomy (Whipple resections) in patients without malignancy: are they all 'chronic pancreatitis'? Am J Surg Pathol 27:110-120PubMedCrossRefGoogle Scholar
  2. Abramson MA, Jazag A, van der Zee JA, Whang EE (2007) ThMahadevane molecular biology of pancreatic cancer. Gastrointestinal Cancer Res: GCR 1:S7-S12PubMedCentralGoogle Scholar
  3. Aguirre AJ et al. (2003) Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes Dev 17:3112-3126. doi: 10.1101/gad.1158703 PubMedPubMedCentralCrossRefGoogle Scholar
  4. Aguirre AJ et al. (2004) High-resolution characterization of the pancreatic adenocarcinoma genome. Proc Natl Acad Sci U S A 101:9067-9072. doi: 10.1073/pnas.0402932101 PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bailey JM et al. (2008) Sonic hedgehog promotes desmoplasia in pancreatic cancer. Clin Cancer Res 14:5995-6004. doi: 10.1158/1078-0432.CCR-08-0291 PubMedPubMedCentralCrossRefGoogle Scholar
  6. Ball DK, Rachfal AW, Kemper SA, Brigstock DR (2003) The heparin-binding 10 kDa fragment of connective tissue growth factor (CTGF) containing module 4 alone stimulates cell adhesion. J Endocrinol 176:R1-R7PubMedCrossRefGoogle Scholar
  7. Banerjee SK, Banerjee S (2012) CCN5/WISP-2: A micromanager of breast cancer progression. JCell CommunSignal 6:63-71. doi: 10.1007/s12079-012-0158-2 Google Scholar
  8. Banerjee SK, Zoubine MN, Mullick M, Weston AP, Cherian R, Campbell DR (2000) Tumor angiogenesis in chronic pancreatitis and pancreatic adenocarcinoma: impact of K-ras mutations. Pancreas 20:248-255PubMedCrossRefGoogle Scholar
  9. Berman DM et al. (2003) Widespread requirement for hedgehog ligand stimulation in growth of digestive tract tumours. Nature 425:846-851. doi: 10.1038/nature01972 PubMedCrossRefGoogle Scholar
  10. Blackstock AW et al. (2001) Tumor uptake and elimination of 2',2'-difluoro-2'-deoxycytidine (gemcitabine) after deoxycytidine kinase gene transfer: correlation with in vivo tumor response. Clin Cancer Res 7:3263-3268PubMedGoogle Scholar
  11. Brigstock DR (1999) The connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed (CCN) family. Endocr Rev 20:189-206PubMedGoogle Scholar
  12. Brigstock DR (2002) Regulation of angiogenesis and endothelial cell function by connective tissue growth factor (CTGF) and cysteine-rich 61 (CYR61. Angiogenesis 5:153-165PubMedCrossRefGoogle Scholar
  13. Brigstock DR (2003) The CCN family: a new stimulus package. J Endocrinol 178:169-175PubMedCrossRefGoogle Scholar
  14. Bullock AN, Fersht AR (2001) Rescuing the function of mutant p53 nature reviews. Cancer 1:68-76. doi: 10.1038/35094077 PubMedGoogle Scholar
  15. Caldas C, Hahn SA, Hruban RH, Redston MS, Yeo CJ, Kern SE (1994) Detection of K-ras mutations in the stool of patients with pancreatic adenocarcinoma and pancreatic ductal hyperplasia. Cancer Res 54:3568-3573PubMedGoogle Scholar
  16. Carr TH et al. (2016) Defining actionable mutations for oncology therapeutic development nature reviews. Cancer 16:319-329. doi: 10.1038/nrc.2016.35 PubMedGoogle Scholar
  17. Charrier A, Brigstock DR (2013) Regulation of pancreatic function by connective tissue growth factor (CTGF, CCN2). Cytokine Growth Factor Rev 24:59-68. doi: 10.1016/j.cytogfr.2012.07.001 PubMedCrossRefGoogle Scholar
  18. Chen PP et al. (2007) Expression of Cyr61, CTGF, and WISP-1 correlates with clinical features of lung cancer. PLoS One 2:e534. doi: 10.1371/journal.pone.0000534 PubMedPubMedCentralCrossRefGoogle Scholar
  19. Chen J, Gao Y, Xu B, Cui X, Xu D (2014) NOV is upregulated and promotes migration and invasion in bladder cancer tumour biology: the journal of the international society for. Oncodevelopmental Biology and Medicine 35:6749-6755. doi: 10.1007/s13277-014-1919-8 CrossRefGoogle Scholar
  20. Chen CC, Kim KH, Lau LF (2016) The matricellular protein CCN1 suppresses hepatocarcinogenesis by inhibiting compensatory proliferation. Oncogene 35:1314-1323. doi: 10.1038/onc.2015.190 PubMedCrossRefGoogle Scholar
  21. Conroy T et al. (2011) FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med 364:1817-1825. doi: 10.1056/NEJMoa1011923 PubMedCrossRefGoogle Scholar
  22. Cui L et al. (2014) NOV promoted the growth and migration of pancreatic cancer cells. Tumour Biology : the Journal of the International Society for Oncodevelopmental Biology and Medicine 35:3195-3201. doi: 10.1007/s13277-013-1418-3 CrossRefGoogle Scholar
  23. Damaraju VL, Damaraju S, Young JD, Baldwin SA, Mackey J, Sawyer MB, Cass CE (2003) Nucleoside anticancer drugs: the role of nucleoside transporters in resistance to cancer chemotherapy. Oncogene 22:7524-7536. doi: 10.1038/sj.onc.1206952 PubMedCrossRefGoogle Scholar
  24. Davies SR, Watkins G, Mansel RE, Jiang WG (2007) Differential expression and prognostic implications of the CCN family members WISP-1, WISP-2, and WISP-3 in human breast cancer. Ann Surg Oncol 14:1909-1918. doi: 10.1245/s10434-007-9376-x PubMedCrossRefGoogle Scholar
  25. Davies SR, Davies ML, Sanders A, Parr C, Torkington J, Jiang WG (2010) Differential expression of the CCN family member WISP-1, WISP-2 and WISP-3 in human colorectal cancer and the prognostic implications. Int J Oncol 36:1129-1136PubMedGoogle Scholar
  26. Dhar G et al. (2007) Loss of WISP-2/CCN5 signaling in human pancreatic cancer: a potential mechanism for epithelial-mesenchymal-transition. Cancer Lett 254:63-70. doi: 10.1016/j.canlet.2007.02.012 PubMedCrossRefGoogle Scholar
  27. Dhar G, Banerjee S, Dhar K, Tawfik O, Mayo MS, Vanveldhuizen PJ, Banerjee SK (2008) Gain of oncogenic function of p53 mutants induces invasive phenotypes in human breast cancer cells by silencing CCN5/WISP-2. Cancer Res 68:4580-4587. doi: 10.1158/0008-5472.CAN-08-0316 PubMedCrossRefGoogle Scholar
  28. Dobson JR et al. (2014) hsa-mir-30c promotes the invasive phenotype of metastatic breast cancer cells by targeting NOV/CCN3. Cancer Cell Int 14:73. doi: 10.1186/s12935-014-0073-0 PubMedPubMedCentralCrossRefGoogle Scholar
  29. Donnenberg VS, Meyer EM, Donnenberg AD (2009) Measurement of multiple drug resistance transporter activity in putative cancer stem/progenitor cells. Methods Mol Biol 568:261-279. doi: 10.1007/978-1-59745-280-9_17 PubMedPubMedCentralCrossRefGoogle Scholar
  30. Duxbury MS, Ito H, Zinner MJ, Ashley SW, Whang EE (2004) RNA interference targeting the M2 subunit of ribonucleotide reductase enhances pancreatic adenocarcinoma chemosensitivity to gemcitabine. Oncogene 23:1539-1548. doi: 10.1038/sj.onc.1207272 PubMedCrossRefGoogle Scholar
  31. Eser S, Schnieke A, Schneider G, Saur D (2014) Oncogenic KRAS signalling in pancreatic cancer. Br J Cancer. doi: 10.1038/bjc.2014.215 PubMedPubMedCentralGoogle Scholar
  32. Fiorini C, Cordani M, Padroni C, Blandino G, Di Agostino S, Donadelli M (2015) Mutant p53 stimulates chemoresistance of pancreatic adenocarcinoma cells to gemcitabine. Biochim Biophys Acta 1853:89-100. doi: 10.1016/j.bbamcr.2014.10.003 PubMedCrossRefGoogle Scholar
  33. Galmarini CM, Clarke ML, Jordheim L, Santos CL, Cros E, Mackey JR, Dumontet C (2004) Resistance to gemcitabine in a human follicular lymphoma cell line is due to partial deletion of the deoxycytidine kinase gene. BMC Pharmacol 4:8. doi: 10.1186/1471-2210-4-8 PubMedPubMedCentralCrossRefGoogle Scholar
  34. Goggins M (2005) Molecular markers of early pancreatic cancer. J Clin Oncol 23:4524-4531. doi: 10.1200/JCO.2005.19.711 PubMedCrossRefGoogle Scholar
  35. Griffin CA, Hruban RH, Long PP, Morsberger LA, Douna-Issa F, Yeo CJ (1994) Chromosome abnormalities in pancreatic adenocarcinoma Genes Chromosom Cancer 9:93-100Google Scholar
  36. Grote T, Logsdon CD (2007) Progress on molecular markers of pancreatic cancer. Curr Opin Gastroenterol 23:508-514. doi: 10.1097/MOG.0b013e3282ba5724 PubMedCrossRefGoogle Scholar
  37. Gupta N et al. (2001) Inhibition of glioma cell growth and tumorigenic potential by CCN3 (NOV). Mol Pathol: MP 54:293-299PubMedPubMedCentralCrossRefGoogle Scholar
  38. Gurbuz I, Chiquet-Ehrismann R (2015) CCN4/WISP1 (WNT1 inducible signaling pathway protein 1): a focus on its role in cancer. Int J Biochem Cell Biol 62:142-146. doi: 10.1016/j.biocel.2015.03.007 PubMedCrossRefGoogle Scholar
  39. Han H, Von Hoff DD (2013) SnapShot: pancreatic cancer. Cancer Cell 23:424-424e421. doi: 10.1016/j.ccr.2013.03.008 PubMedPubMedCentralCrossRefGoogle Scholar
  40. Hanel W, Marchenko N, Xu S, Yu SX, Weng W, Moll U (2013) Two hot spot mutant p53 mouse models display differential gain of function in tumorigenesis. Cell Death Differ 20:898-909. doi: 10.1038/cdd.2013.17 PubMedPubMedCentralCrossRefGoogle Scholar
  41. Haque I et al. (2011) Cyr61/CCN1 signaling is critical for epithelial-mesenchymal transition and stemness and promotes pancreatic carcinogenesis. Mol Cancer 10:8. doi: 10.1186/1476-4598-10-8 PubMedPubMedCentralCrossRefGoogle Scholar
  42. Haque I et al. (2012) The matricellular protein CCN1/Cyr61 is a critical regulator of Sonic Hedgehog in pancreatic carcinogenesis. J Biol Chem 287:38569-38579. doi: 10.1074/jbc.M112.389064 PubMedPubMedCentralCrossRefGoogle Scholar
  43. Hermann PC et al. (2007) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1:313-323. doi: 10.1016/j.stem.2007.06.002 PubMedCrossRefGoogle Scholar
  44. Hidalgo M (2010) Pancreatic cancer. N Engl J Med 362:1605-1617. doi: 10.1056/NEJMra0901557 PubMedCrossRefGoogle Scholar
  45. Hingorani SR et al. (2005) Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7:469-483. doi: 10.1016/j.ccr.2005.04.023 PubMedCrossRefGoogle Scholar
  46. Holloway SE, Beck AW, Girard L, Jaber MR, Barnett CC Jr, Brekken RA, Fleming JB (2005) Increased expression of Cyr61 (CCN1) identified in peritoneal metastases from human pancreatic cancer. J Am Coll Surg 200:371-377. doi: 10.1016/j.jamcollsurg.2004.10.005 PubMedCrossRefGoogle Scholar
  47. Huang H, Daniluk J, Liu Y, Chu J, Li Z, Ji B, Logsdon CD (2014) Oncogenic K-ras requires activation for enhanced activity. Oncogene 33:532-535. doi: 10.1038/onc.2012.619 PubMedCrossRefGoogle Scholar
  48. Huynh AS, Abrahams DF, Torres MS, Baldwin MK, Gillies RJ, Morse DL (2011) Development of an orthotopic human pancreatic cancer xenograft model using ultrasound guided injection of cells. PLoS One 6:e20330. doi: 10.1371/journal.pone.0020330 PubMedPubMedCentralCrossRefGoogle Scholar
  49. Ji Q et al. (2009) MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS One 4:e6816. doi: 10.1371/journal.pone.0006816 PubMedPubMedCentralCrossRefGoogle Scholar
  50. Ji J, Jia S, Ji K, Jiang WG (2014) Wnt1 inducible signalling pathway protein-2 (WISP2/CCN5): roles and regulation in human cancers (review). Oncol Rep 31:533-539. doi: 10.3892/or.2013.2909 PubMedGoogle Scholar
  51. Jun JI, Lau LF (2011) Taking aim at the extracellular matrix: CCN proteins as emerging therapeutic targets. Nat Rev Drug Discov 10:945-963. doi: 10.1038/nrd3599 PubMedPubMedCentralCrossRefGoogle Scholar
  52. Kanda M et al. (2012) Presence of somatic mutations in most early-stage pancreatic intraepithelial neoplasia. Gastroenterology 142:730-733e739. doi: 10.1053/j.gastro.2011.12.042 PubMedPubMedCentralCrossRefGoogle Scholar
  53. Kanda M et al. (2013) Mutant TP53 in duodenal samples of pancreatic juice from patients with pancreatic cancer or high-grade dysplasia. Clinical Gastroenterology and Hepatology : the Official Clinical Practice Journal of the American Gastroenterological Association 11:719-730e715. doi: 10.1016/j.cgh.2012.11.016 CrossRefGoogle Scholar
  54. Keleg S, Buchler P, Ludwig R, Buchler MW, Friess H (2003) Invasion and metastasis in pancreatic cancer. Mol Cancer 2:14PubMedPubMedCentralCrossRefGoogle Scholar
  55. Kern SE, Hruban RH, Hidalgo M, Yeo CJ (2002) An introduction to pancreatic adenocarcinoma genetics, pathology and therapy. Cancer Biol Ther 1:607-613PubMedCrossRefGoogle Scholar
  56. Kong B, Michalski CW, Kleeff J (2009) Tumor initiating cells in pancreatic cancer: a critical view. World Journal of Stem Cells 1:8-10. doi: 10.4252/wjsc.v1.i1.8 PubMedPubMedCentralCrossRefGoogle Scholar
  57. Lake AC, Castellot JJ Jr (2003) CCN5 modulates the antiproliferative effect of heparin and regulates cell motility in vascular smooth muscle cells. Cell Communication and Signaling : CCS 1:5. doi: 10.1186/1478-811X-1-5
  58. Lane DP, Hupp TR (2003) Drug discovery and p53. Drug Discov Today 8:347-355PubMedCrossRefGoogle Scholar
  59. Lang GA et al. (2004) Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell 119:861-872. doi: 10.1016/j.cell.2004.11.006 PubMedCrossRefGoogle Scholar
  60. Lau LF (2012) CCN1 and CCN2: blood brothers in angiogenic action. Journal of Cell Communication and Signaling 6:121-123. doi: 10.1007/s12079-012-0169-z PubMedPubMedCentralCrossRefGoogle Scholar
  61. Lau LF (2016) Cell surface receptors for CCN proteins. Journal of Cell Communication and Signaling 10:121-127. doi: 10.1007/s12079-016-0324-z PubMedPubMedCentralCrossRefGoogle Scholar
  62. Leask A (2010) Yin and Yang part Deux: CCN5 inhibits the pro-fibrotic effects of CCN2. Journal of Cell Communication and Signaling 4:155-156. doi: 10.1007/s12079-010-0092-0 PubMedPubMedCentralCrossRefGoogle Scholar
  63. Leask A (2011) CCN1: a novel target for pancreatic cancer. Journal of Cell Communication and Signaling 5:123-124. doi: 10.1007/s12079-011-0127-1 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Leask A (2013) Sonic advance: CCN1 regulates sonic hedgehog in pancreatic cancer. Journal of Cell Communication and Signaling 7:61-62. doi: 10.1007/s12079-012-0187-x PubMedCrossRefGoogle Scholar
  65. Lee CJ, Dosch J, Simeone DM (2008a) Pancreatic cancer stem cells. J Clin Oncol 26:2806-2812. doi: 10.1200/JCO.2008.16.6702 PubMedCrossRefGoogle Scholar
  66. Lee CJ, Li C, Simeone DM (2008b) Human pancreatic cancer stem cells: implications for how we treat pancreatic cancer. Transl Oncol 1:14-18PubMedPubMedCentralCrossRefGoogle Scholar
  67. Lehmann BD, Pietenpol JA (2012) Targeting mutant p53 in human tumors. J Clin Oncol 30:3648-3650. doi: 10.1200/JCO.2012.44.0412 PubMedCrossRefGoogle Scholar
  68. Levine AJ, Oren M (2009) The first 30 years of p53: growing ever more complex nature reviews. Cancer 9:749-758. doi: 10.1038/nrc2723 PubMedPubMedCentralGoogle Scholar
  69. Li C et al. (2007) Identification of pancreatic cancer stem cells. Cancer Res 67:1030-1037. doi: 10.1158/0008-5472.CAN-06-2030 PubMedCrossRefGoogle Scholar
  70. Li J, Ye L, Owen S, Weeks HP, Zhang Z, Jiang WG (2015) Emerging Role of CCN Family Proteins in Tumorigenesis and Cancer Metastasis (Review) International Journal of Molecular Medicine 36:1451-1463. doi: 10.3892/ijmm.2015.2390 PubMedPubMedCentralGoogle Scholar
  71. Lin CG, Leu SJ, Chen N, Tebeau CM, Lin SX, Yeung CY, Lau LF (2003) CCN3 (NOV) is a novel angiogenic regulator of the CCN protein family. J Biol Chem 278:24200-24208. doi: 10.1074/jbc.M302028200 PubMedCrossRefGoogle Scholar
  72. Mahadevan D, Von Hoff DD (2007) Tumor-stroma interactions in pancreatic ductal adenocarcinoma. Mol Cancer Ther 6:1186-1197. doi: 10.1158/1535-7163.MCT-06-0686 PubMedCrossRefGoogle Scholar
  73. Maitra A et al. (2002) Cyclooxygenase 2 expression in pancreatic adenocarcinoma and pancreatic intraepithelial neoplasia: an immunohistochemical analysis with automated cellular imaging. Am J Clin Pathol 118:194-201. doi: 10.1309/TPG4-CK1C-9V8V-8AWC PubMedCrossRefGoogle Scholar
  74. Maitra A et al. (2003) Multicomponent analysis of the pancreatic adenocarcinoma progression model using a pancreatic intraepithelial neoplasia tissue microarray. Modern Pathology : an Official Journal of the United States and Canadian Academy of Pathology, Inc 16:902-912. doi: 10.1097/01.MP.0000086072.56290.FB CrossRefGoogle Scholar
  75. Maity G, Mehta S, Haque I, Dhar K, Sarkar S, Banerjee SK, Banerjee S (2014) Pancreatic tumor cell secreted CCN1/Cyr61 promotes endothelial cell migration and aberrant neovascularization. Sci Report 4:4995. doi: 10.1038/srep04995 CrossRefGoogle Scholar
  76. Marigo V, Johnson RL, Vortkamp A, Tabin CJ (1996) Sonic hedgehog differentially regulates expression of GLI and GLI3 during limb development. Dev Biol 180:273-283. doi: 10.1006/dbio.1996.0300 PubMedCrossRefGoogle Scholar
  77. Masciarelli S, Fontemaggi G, Di Agostino S, Donzelli S, Carcarino E, Strano S, Blandino G (2014) Gain-of-function mutant p53 downregulates miR-223 contributing to chemoresistance of cultured tumor cells. Oncogene 33:1601-1608. doi: 10.1038/onc.2013.106 PubMedCrossRefGoogle Scholar
  78. Mazur PK, Siveke JT (2012) Genetically engineered mouse models of pancreatic cancer: unravelling tumour biology and progressing translational oncology. Gut 61:1488-1500. doi: 10.1136/gutjnl-2011-300756 PubMedCrossRefGoogle Scholar
  79. Merika EE, Syrigos KN, Saif MW (2012) Desmoplasia in pancreatic cancer. Can we fight it? Gastroenterol Res Pract 2012:781765. doi: 10.1155/2012/781765 PubMedPubMedCentralCrossRefGoogle Scholar
  80. Mimeault M, Batra SK (2014) Molecular biomarkers of cancer stem/progenitor cells associated with progression, metastases, and treatment resistance of aggressive cancers Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer. Research, Cosponsored by the American Society of Preventive Oncology 23:234-254. doi: 10.1158/1055-9965.EPI-13-0785 Google Scholar
  81. Mohammed A, Janakiram NB, Pant S, Rao CV (2015) Molecular targeted intervention for pancreatic cancer. Cancer 7:1499-1542. doi: 10.3390/cancers7030850 CrossRefGoogle Scholar
  82. Montero AJ et al. (2012) Phase 2 study of neoadjuvant treatment with NOV-002 in combination with doxorubicin and cyclophosphamide followed by docetaxel in patients with HER-2 negative clinical stage II-IIIc breast cancer. Breast Cancer Res Treat 132:215-223. doi: 10.1007/s10549-011-1889-0 PubMedCrossRefGoogle Scholar
  83. Nakahira S et al. (2007) Involvement of ribonucleotide reductase M1 subunit overexpression in gemcitabine resistance of human pancreatic cancer. International Journal of Cancer Journal International Du Cancer 120:1355-1363. doi: 10.1002/ijc.22390 PubMedCrossRefGoogle Scholar
  84. Neesse A et al. (2013) CTGF antagonism with mAb FG-3019 enhances chemotherapy response without increasing drug delivery in murine ductal pancreas cancer. Proc Natl Acad Sci U S A 110:12325-12330. doi: 10.1073/pnas.1300415110 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Olive KP, Tuveson DA (2006) The use of targeted mouse models for preclinical testing of novel cancer therapeutics. Clin Cancer Res 12:5277-5287. doi: 10.1158/1078-0432.CCR-06-0436 PubMedCrossRefGoogle Scholar
  86. Olive KP et al. (2004) Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell 119:847-860. doi: 10.1016/j.cell.2004.11.004 PubMedCrossRefGoogle Scholar
  87. Olive KP et al. (2009) Inhibition of hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324:1457-1461. doi: 10.1126/science.1171362 PubMedPubMedCentralCrossRefGoogle Scholar
  88. Olivier M et al. (2006) The clinical value of somatic TP53 gene mutations in 1,794 patients with breast cancer. Clin Cancer Res 12:1157-1167. doi: 10.1158/1078-0432.CCR-05-1029 PubMedCrossRefGoogle Scholar
  89. Ono M et al. (2013) WISP1/CCN4: a potential target for inhibiting prostate cancer growth and spread to bone. PLoS One 8:e71709. doi: 10.1371/journal.pone.0071709 PubMedPubMedCentralCrossRefGoogle Scholar
  90. Ottenhof NA, de Wilde RF, Maitra A, Hruban RH, Offerhaus GJ (2011) Molecular characteristics of pancreatic ductal adenocarcinoma. Pathol Res Int 2011:620601. doi: 10.4061/2011/620601 CrossRefGoogle Scholar
  91. Perbal B (2001) The CCN family of genes: a brief history. Molecular Pathol: MP 54:103-104PubMedCentralCrossRefGoogle Scholar
  92. Perbal B (2004) CCN proteins: multifunctional signalling regulators. Lancet 363:62-64. doi: 10.1016/S0140-6736(03)15172-0 PubMedCrossRefGoogle Scholar
  93. Perera RM, Bardeesy N (2012) Ready, set, go: the EGF receptor at the pancreatic cancer starting line. Cancer Cell 22:281-282. doi: 10.1016/j.ccr.2012.08.019 PubMedPubMedCentralCrossRefGoogle Scholar
  94. Planque N, Perbal B (2003) A structural approach to the role of CCN (CYR61/CTGF/NOV) proteins in tumourigenesis. Cancer Cell Int 3:15. doi: 10.1186/1475-2867-3-15 PubMedPubMedCentralCrossRefGoogle Scholar
  95. Reichert M, Rustgi AK (2011) Pancreatic ductal cells in development, regeneration, and neoplasia. J Clin Invest 121:4572-4578. doi: 10.1172/JCI57131 PubMedPubMedCentralCrossRefGoogle Scholar
  96. Rhim AD et al. (2014) Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell 25:735-747. doi: 10.1016/j.ccr.2014.04.021 PubMedPubMedCentralCrossRefGoogle Scholar
  97. Russo JW, Castellot JJ (2010) CCN5: biology and pathophysiology. Journal of Cell Communication and Signaling 4:119-130. doi: 10.1007/s12079-010-0098-7 PubMedPubMedCentralCrossRefGoogle Scholar
  98. Sabbah M et al. (2011) CCN5, a novel transcriptional repressor of the transforming growth factor beta signaling pathway. Mol Cell Biol 31:1459-1469. doi: 10.1128/MCB.01316-10 PubMedPubMedCentralCrossRefGoogle Scholar
  99. Saxena N, Banerjee S, Sengupta K, Zoubine MN, Banerjee SK (2001) Differential expression of WISP-1 and WISP-2 genes in normal and transformed human breast cell lines. Mol Cell Biochem 228:99-104PubMedCrossRefGoogle Scholar
  100. Simeone DM (2008) Pancreatic cancer stem cells: implications for the treatment of pancreatic cancer. Clin Cancer Res 14:5646-5648. doi: 10.1158/1078-0432.CCR-08-0584 PubMedCrossRefGoogle Scholar
  101. Soon LL, Yie TA, Shvarts A, Levine AJ, Su F, Tchou-Wong KM (2003) Overexpression of WISP-1 down-regulated motility and invasion of lung cancer cells through inhibition of Rac activation. J Biol Chem 278:11465-11470. doi: 10.1074/jbc.M210945200 PubMedCrossRefGoogle Scholar
  102. Spivak-Kroizman TR et al. (2013) Hypoxia triggers hedgehog-mediated tumor-stromal interactions in pancreatic cancer. Cancer Res 73:3235-3247. doi: 10.1158/0008-5472.CAN-11-1433 PubMedPubMedCentralCrossRefGoogle Scholar
  103. Stromnes IM, Greenberg PD (2016) Pancreatic cancer: planning ahead for metastatic spread. Cancer Cell 29:774-776. doi: 10.1016/j.ccell.2016.05.013 PubMedCrossRefGoogle Scholar
  104. Takigawa M (2003) CTGF/Hcs24 as a multifunctional growth factor for fibroblasts, chondrocytes and vascular endothelial cells. Drug News & Perspectives 16:11-21CrossRefGoogle Scholar
  105. Thayer SP et al. (2003) Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature 425:851-856. doi: 10.1038/nature02009 PubMedPubMedCentralCrossRefGoogle Scholar
  106. Tian C et al. (2007) Overexpression of connective tissue growth factor WISP-1 in Chinese primary rectal cancer patients. World J Gastroenterol: WJG 13:3878-3882PubMedPubMedCentralCrossRefGoogle Scholar
  107. Ueda M et al. (2015) Clinical significance of expression of nephroblastoma overexpressed (NOV) in patients with colorectal cancer. Anticancer Res 35:6591-6597PubMedGoogle Scholar
  108. Vaz AP, Ponnusamy MP, Batra SK (2013) Cancer stem cells and therapeutic targets: an emerging field for cancer treatment. Drug Delivery and Translational Research 3:113-120. doi: 10.1007/s13346-012-0095-x PubMedPubMedCentralCrossRefGoogle Scholar
  109. Von Hoff DD, Korn R, Mousses S (2009) Pancreatic cancer--could it be that simple? A different context of vulnerability. Cancer Cell 16:7-8. doi: 10.1016/j.ccr.2009.06.011 PubMedCrossRefGoogle Scholar
  110. Von Hoff DD et al. (2013) Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med 369:1691-1703. doi: 10.1056/NEJMoa1304369 PubMedPubMedCentralCrossRefGoogle Scholar
  111. Voutsadakis IA (2011) Molecular predictors of gemcitabine response in pancreatic cancer. World J Gastrointest Oncol 3:153-164. doi: 10.4251/wjgo.v3.i11.153 PubMedPubMedCentralCrossRefGoogle Scholar
  112. Wang J, Zhang GY, Li XH (2006) Effect of indomethacin on Bfl-1, WISP-1 and proliferating cell nuclear antigen in colon cancer cell line HCT116 cells. Chin J Dig Dis 7:219-224. doi: 10.1111/j.1443-9573.2006.00272.x PubMedCrossRefGoogle Scholar
  113. Wang-Gillam A et al. (2016) Nanoliposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine-based therapy (NAPOLI-1): a global, randomised, open-label, phase 3 trial. Lancet 387:545-557. doi: 10.1016/S0140-6736(15)00986-1 PubMedCrossRefGoogle Scholar
  114. Weissmueller S et al. (2014) Mutant p53 drives pancreatic cancer metastasis through cell-autonomous PDGF receptor beta signaling. Cell 157:382-394. doi: 10.1016/j.cell.2014.01.066 PubMedPubMedCentralCrossRefGoogle Scholar
  115. Whatcott CJ, Posner RG, Von Hoff DD, Han H (2012) Desmoplasia and chemoresistance in pancreatic cancer. In: PJ G, HG M (eds) Pancreatic Cancer and Tumor Microenvironment. Trivandrum, IndiaGoogle Scholar
  116. Wilentz RE et al. (1998) Inactivation of the p16 (INK4A) tumor-suppressor gene in pancreatic duct lesions: loss of intranuclear expression. Cancer Res 58:4740-4744PubMedGoogle Scholar
  117. Wu L et al. (2014) CCN3/NOV gene expression in human prostate cancer is directly suppressed by the androgen receptor. Oncogene 33:504-513. doi: 10.1038/onc.2012.602 PubMedCrossRefGoogle Scholar
  118. Yang JY et al. (2015) High expression of WISP-1 correlates with poor prognosis in pancreatic ductal adenocarcinoma. Am J Transl Res 7:1621-1628PubMedPubMedCentralGoogle Scholar
  119. Ying H et al. (2012) Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149:656-670. doi: 10.1016/j.cell.2012.01.058 PubMedPubMedCentralCrossRefGoogle Scholar
  120. Yu C, Le AT, Yeger H, Perbal B, Alman BA (2003) NOV (CCN3) regulation in the growth plate and CCN family member expression in cartilage neoplasia. J Pathol 201:609-615. doi: 10.1002/path.1468 PubMedCrossRefGoogle Scholar
  121. Zhang L et al. (1997) Gene expression profiles in normal and cancer cells. Science 276:1268-1272PubMedCrossRefGoogle Scholar
  122. Zhou BB, Zhang H, Damelin M, Geles KG, Grindley JC, Dirks PB (2009) Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nat Rev Drug Discov 8:806-823. doi: 10.1038/nrd2137 PubMedCrossRefGoogle Scholar

Copyright information

© The International CCN Society (outside the USA) 2016

Authors and Affiliations

  • Sushanta K. Banerjee
    • 1
    • 2
    • 3
    • 4
  • Gargi Maity
    • 1
    • 3
  • Inamul Haque
    • 1
    • 2
  • Arnab Ghosh
    • 1
    • 2
  • Sandipto Sarkar
    • 1
    • 4
  • Vijayalaxmi Gupta
    • 1
    • 2
  • Donald R. Campbell
    • 5
  • Daniel Von Hoff
    • 6
  • Snigdha Banerjee
    • 1
    • 2
  1. 1.Cancer Research UnitVA Medical CenterKansas CityUSA
  2. 2.Department of OncologyUniversity of Kansas Medical CenterKansasUSA
  3. 3.Department of Pathology and Laboratory MedicineUniversity of Kansas Medical CenterKansasUSA
  4. 4.Department of Anatomy and Cell BiologyUniversity of Kansas Medical CenterKansasUSA
  5. 5.University of Missouri Kansas City and Saint Luke’s HospitalKansas CityUSA
  6. 6.Translational Genomic Research Institute (TGen)PhoenixUSA

Personalised recommendations