Journal of Cell Communication and Signaling

, Volume 8, Issue 4, pp 311–321 | Cite as

Getting the better of ER stress

  • Bertrand Mollereau
  • Serge Manié
  • Francesco Napoletano


Research over the past few years has highlighted the ability of the unfolded protein response (UPR) to minimize the deleterious effects of accumulated misfolded proteins under both physiological and pathological conditions. The endoplasmic reticulum (ER) adapts to endogenous and exogenous stressors by expanding its protein-folding capacity and by stimulating protective processes such as autophagy and antioxidant responses. Although it is clear that severe ER stress can elicit cell death, several recent studies have shown that low levels of ER stress may actually be beneficial to cells by eliciting an adaptive UPR that ‘preconditions’ the cell to a subsequent lethal insult; this process is called ER hormesis. The findings have important implications for the treatment of a wide variety of diseases associated with defective proteostasis, including neurodegenerative diseases, diabetes, and cancer. Here, we review the physiological and pathological functions of the ER, with a particular focus on the molecular mechanisms that lead to ER hormesis and cellular protection, and discuss the implications for disease treatment.


Endoplasmic reticulum Mitochondria Unfolded protein response Neurodegenerative diseases Cancer Diabetes 





Amyotrophic lateral sclerosis


Apoptosis signal-regulating kinase


Activating transcription factor


C/EBP-homologous protein


Central nervous system




Death receptor 5


Eukaryotic translation initiation factor 2α


Endoplasmic reticulum


ER-associated degradation


Heterochromatin protein like-2


Inositol-requiring enzyme 1


Jun N-terminal kinase


Kelch-like ECH-associated protein 1


Mitochondrial-associated ER membranes


Protein kinase RNA-like ER kinase


Phosphoinositide 3-kinase




Regulated IRE1-dependent decay


Reactive oxygen species


Site 1 protease


Unfolded protein response


Valosin-containing protein


X-box binding protein 1



This work was supported by grants from the Fondation ARC pour la Recherche sur le Cancer (SFI20121205951) and the Centre national de la recherche scientifique to BM, and from the Ligue Nationale Contre le Cancer (Comité du rhône) and Fondation ARC pour la Recherche sur le Cancer (PJA20131200334) to SM.


  1. Back SH, Kaufman RJ (2012) Endoplasmic reticulum stress and type 2 diabetes. Annu Rev Biochem 81:767–793. doi: 10.1146/annurev-biochem-072909-095555 PubMedCentralPubMedCrossRefGoogle Scholar
  2. Back SH, Scheuner D, Han J, Song B, Ribick M, Wang J, Gildersleeve RD, Pennathur S, Kaufman RJ (2009) Translation attenuation through eIF2alpha phosphorylation prevents oxidative stress and maintains the differentiated state in beta cells. Cell Metab 10(1):13–26. doi: 10.1016/j.cmet.2009.06.002 PubMedCentralPubMedCrossRefGoogle Scholar
  3. Biden TJ, Boslem E, Chu KY, Sue N (2014) Lipotoxic endoplasmic reticulum stress, beta cell failure, and type 2 diabetes mellitus. Trends Endocrinol Metab. doi: 10.1016/j.tem.2014.02.003 PubMedGoogle Scholar
  4. Bravo R, Vicencio JM, Parra V, Troncoso R, Munoz JP, Bui M, Quiroga C, Rodriguez AE, Verdejo HE, Ferreira J, Iglewski M, Chiong M, Simmen T, Zorzano A, Hill JA, Rothermel BA, Szabadkai G, Lavandero S (2011) Increased ER-mitochondrial coupling promotes mitochondrial respiration and bioenergetics during early phases of ER stress. J Cell Sci 124(Pt 13):2143–2152. doi: 10.1242/jcs.080762 PubMedCentralPubMedCrossRefGoogle Scholar
  5. Calabrese EJ, Bachmann KA, Bailer AJ, Bolger PM, Borak J, Cai L, Cedergreen N, Cherian MG, Chiueh CC, Clarkson TW, Cook RR, Diamond DM, Doolittle DJ, Dorato MA, Duke SO, Feinendegen L, Gardner DE, Hart RW, Hastings KL, Hayes AW, Hoffmann GR, Ives JA, Jaworowski Z, Johnson TE, Jonas WB, Kaminski NE, Keller JG, Klaunig JE, Knudsen TB, Kozumbo WJ, Lettieri T, Liu SZ, Maisseu A, Maynard KI, Masoro EJ, McClellan RO, Mehendale HM, Mothersill C, Newlin DB, Nigg HN, Oehme FW, Phalen RF, Philbert MA, Rattan SI, Riviere JE, Rodricks J, Sapolsky RM, Scott BR, Seymour C, Sinclair DA, Smith-Sonneborn J, Snow ET, Spear L, Stevenson DE, Thomas Y, Tubiana M, Williams GM, Mattson MP (2007) Biological stress response terminology: integrating the concepts of adaptive response and preconditioning stress within a hormetic dose–response framework. Toxicol Appl Pharmacol 222(1):122–128. doi: 10.1016/j.taap.2007.02.015 PubMedCrossRefGoogle Scholar
  6. Calabrese V, Cornelius C, Dinkova-Kostova AT, Calabrese EJ, Mattson MP (2010) Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid Redox Signal 13(11):1763–1811PubMedCentralPubMedCrossRefGoogle Scholar
  7. Carroll CE, Marada S, Stewart DP, Ouyang JX, Ogden SK (2012) The extracellular loops of Smoothened play a regulatory role in control of Hedgehog pathway activation. Development 139(3):612–621. doi: 10.1242/dev.075614 PubMedCentralPubMedCrossRefGoogle Scholar
  8. Chitnis NS, Pytel D, Bobrovnikova-Marjon E, Pant D, Zheng H, Maas NL, Frederick B, Kushner JA, Chodosh LA, Koumenis C, Fuchs SY, Diehl JA (2012) miR-211 is a prosurvival microRNA that regulates chop expression in a PERK-dependent manner. Mol Cell 48(3):353–364. doi: 10.1016/j.molcel.2012.08.025 PubMedCentralPubMedCrossRefGoogle Scholar
  9. Coelho DS, Cairrao F, Zeng X, Pires E, Coelho AV, Ron D, Ryoo HD, Domingos PM (2013) Xbp1-independent ire1 signaling is required for photoreceptor differentiation and rhabdomere morphogenesis in Drosophila. Cell Rep 5(3):791–801. doi: 10.1016/j.celrep.2013.09.046 PubMedCrossRefGoogle Scholar
  10. Cullinan SB, Diehl JA (2004) PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress. J Biol Chem 279(19):20108–20117PubMedCrossRefGoogle Scholar
  11. Cullinan SB, Diehl JA (2006) Coordination of ER and oxidative stress signaling: the PERK/Nrf2 signaling pathway. Int J Biochem Cell Biol 38(3):317–332PubMedCrossRefGoogle Scholar
  12. Cullinan SB, Zhang D, Hannink M, Arvisais E, Kaufman RJ, Diehl JA (2003) Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol Cell Biol 23(20):7198–7209PubMedCentralPubMedCrossRefGoogle Scholar
  13. Deegan S, Saveljeva S, Gorman AM, Samali A (2013) Stress-induced self-cannibalism: on the regulation of autophagy by endoplasmic reticulum stress. Cell Mol Life Sci 70(14):2425–2441. doi: 10.1007/s00018-012-1173-4 PubMedCrossRefGoogle Scholar
  14. Dirnagl U, Meisel A (2008) Endogenous neuroprotection: mitochondria as gateways to cerebral preconditioning? Neuropharmacology 55(3):334–344. doi: 10.1016/j.neuropharm.2008.02.017 PubMedCrossRefGoogle Scholar
  15. Dourlen P, Bertin B, Chatelain G, Robin M, Napoletano F, Roux MJ, Mollereau B (2012) Drosophila fatty acid transport protein regulates rhodopsin-1 metabolism and is required for photoreceptor neuron survival. PLoS Genet 8(7):e1002833. doi: 10.1371/journal.pgen.1002833 PubMedCentralPubMedCrossRefGoogle Scholar
  16. Elanchezhian R, Palsamy P, Madson CJ, Lynch DW, Shinohara T (2012) Age-related cataracts: homocysteine coupled endoplasmic reticulum stress and suppression of Nrf2-dependent antioxidant protection. Chem Biol Interact 200(1):1–10. doi: 10.1016/j.cbi.2012.08.017 PubMedCentralPubMedCrossRefGoogle Scholar
  17. Fonseca SG, Fukuma M, Lipson KL, Nguyen LX, Allen JR, Oka Y, Urano F (2005) WFS1 is a novel component of the unfolded protein response and maintains homeostasis of the endoplasmic reticulum in pancreatic beta-cells. J Biol Chem 280(47):39609–39615. doi: 10.1074/jbc.M507426200 PubMedCrossRefGoogle Scholar
  18. Fonseca SG, Burcin M, Gromada J, Urano F (2009) Endoplasmic reticulum stress in beta-cells and development of diabetes. Curr Opin Pharmacol 9(6):763–770. doi: 10.1016/j.coph.2009.07.003 PubMedCentralPubMedCrossRefGoogle Scholar
  19. Fonseca SG, Ishigaki S, Oslowski CM, Lu S, Lipson KL, Ghosh R, Hayashi E, Ishihara H, Oka Y, Permutt MA, Urano F (2010) Wolfram syndrome 1 gene negatively regulates ER stress signaling in rodent and human cells. J Clin Invest 120(3):744–755. doi: 10.1172/jci39678 PubMedCentralPubMedCrossRefGoogle Scholar
  20. Fouillet A, Levet C, Virgone A, Robin M, Dourlen P, Rieusset J, Belaidi E, Ovize M, Touret M, Nataf S, Mollereau B (2012) ER stress inhibits neuronal death by promoting autophagy. Autophagy 8(6):915–926. doi: 10.4161/auto.19716 PubMedCentralPubMedCrossRefGoogle Scholar
  21. Gao B, Zhang XY, Han R, Zhang TT, Chen C, Qin ZH, Sheng R (2013) The endoplasmic reticulum stress inhibitor salubrinal inhibits the activation of autophagy and neuroprotection induced by brain ischemic preconditioning. Acta Pharmacol Sin 34(5):657–666. doi: 10.1038/aps.2013.34 PubMedCentralPubMedCrossRefGoogle Scholar
  22. Ghosh R, Wang L, Wang ES, Perera BG, Igbaria A, Morita S, Prado K, Thamsen M, Caswell D, Macias H, Weiberth KF, Gliedt MJ, Alavi MV, Hari SB, Mitra AK, Bhhatarai B, Schurer SC, Snapp EL, Gould DB, German MS, Backes BJ, Maly DJ, Oakes SA, Papa FR (2014) Allosteric inhibition of the IRE1alpha RNase preserves cell viability and function during endoplasmic reticulum stress. Cell 158(3):534–548. doi: 10.1016/j.cell.2014.07.002 PubMedCrossRefGoogle Scholar
  23. Griciuc A, Aron L, Roux MJ, Klein R, Giangrande A, Ueffing M (2010) Inactivation of VCP/ter94 suppresses retinal pathology caused by misfolded rhodopsin in Drosophila. PLoS Genet 6(8), e1001075PubMedCentralPubMedCrossRefGoogle Scholar
  24. Hamm HE, Bownds MD (1986) Protein complement of rod outer segments of frog retina. Biochemistry 25(16):4512–4523PubMedCrossRefGoogle Scholar
  25. Hara H, Kamiya T, Adachi T (2011) Endoplasmic reticulum stress inducers provide protection against 6-hydroxydopamine-induced cytotoxicity. Neurochem Int 58(1):35–43PubMedCrossRefGoogle Scholar
  26. Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M, Ron D (2000a) Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 6(5):1099–1108PubMedCrossRefGoogle Scholar
  27. Harding HP, Zhang Y, Bertolotti A, Zeng H, Ron D (2000b) Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell 5(5):897–904PubMedCrossRefGoogle Scholar
  28. Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, Sadri N, Yun C, Popko B, Paules R, Stojdl DF, Bell JC, Hettmann T, Leiden JM, Ron D (2003) An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11(3):619–633PubMedCrossRefGoogle Scholar
  29. Harding HP, Zhang Y, Scheuner D, Chen JJ, Kaufman RJ, Ron D (2009) Ppp1r15 gene knockout reveals an essential role for translation initiation factor 2 alpha (eIF2alpha) dephosphorylation in mammalian development. Proc Natl Acad Sci U S A 106(6):1832–1837. doi: 10.1073/pnas.0809632106 PubMedCentralPubMedCrossRefGoogle Scholar
  30. Hart LS, Cunningham JT, Datta T, Dey S, Tameire F, Lehman SL, Qiu B, Zhang H, Cerniglia G, Bi M, Li Y, Gao Y, Liu H, Li C, Maity A, Thomas-Tikhonenko A, Perl AE, Koong A, Fuchs SY, Diehl JA, Mills IG, Ruggero D, Koumenis C (2012) ER stress-mediated autophagy promotes Myc-dependent transformation and tumor growth. J Clin Invest 122(12):4621–4634. doi: 10.1172/jci62973 PubMedCentralPubMedCrossRefGoogle Scholar
  31. Hayashi A, Kasahara T, Iwamoto K, Ishiwata M, Kametani M, Kakiuchi C, Furuichi T, Kato T (2007) The role of brain-derived neurotrophic factor (BDNF)-induced XBP1 splicing during brain development. J Biol Chem 282(47):34525–34534. doi: 10.1074/jbc.M704300200 PubMedCrossRefGoogle Scholar
  32. Hayashi A, Kasahara T, Kametani M, Kato T (2008) Attenuated BDNF-induced upregulation of GABAergic markers in neurons lacking Xbp1. Biochem Biophys Res Commun 376(4):758–763. doi: 10.1016/j.bbrc.2008.09.059 PubMedCrossRefGoogle Scholar
  33. Henis-Korenblit S, Zhang P, Hansen M, McCormick M, Lee SJ, Cary M, Kenyon C (2010) Insulin/IGF-1 signaling mutants reprogram ER stress response regulators to promote longevity. Proc Natl Acad Sci U S A 107(21):9730–9735. doi: 10.1073/pnas.1002575107 PubMedCentralPubMedCrossRefGoogle Scholar
  34. Hetz C (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 13(2):89–102. doi: 10.1038/nrm3270 PubMedGoogle Scholar
  35. Hetz C, Mollereau B (2014) Disturbance of endoplasmic reticulum proteostasis in neurodegenerative diseases. Nat Rev Neurosci 15(4):233–249. doi: 10.1038/nrn3689 PubMedCrossRefGoogle Scholar
  36. Hetz C, Lee AH, Gonzalez-Romero D, Thielen P, Castilla J, Soto C, Glimcher LH (2008) Unfolded protein response transcription factor XBP-1 does not influence prion replication or pathogenesis. Proc Natl Acad Sci U S A 105(2):757–762. doi: 10.1073/pnas.0711094105 PubMedCentralPubMedCrossRefGoogle Scholar
  37. Hetz C, Thielen P, Matus S, Nassif M, Court F, Kiffin R, Martinez G, Cuervo AM, Brown RH, Glimcher LH (2009) XBP-1 deficiency in the nervous system protects against amyotrophic lateral sclerosis by increasing autophagy. Genes Dev 23(19):2294–2306PubMedCentralPubMedCrossRefGoogle Scholar
  38. Higa A, Chevet E (2012) Redox signaling loops in the unfolded protein response. Cell Signal 24(8):1548–1555. doi: 10.1016/j.cellsig.2012.03.011 PubMedCrossRefGoogle Scholar
  39. Huber AL, Lebeau J, Guillaumot P, Petrilli V, Malek M, Chilloux J, Fauvet F, Payen L, Kfoury A, Renno T, Chevet E, Manie SN (2013) p58(IPK)-mediated attenuation of the proapoptotic PERK-CHOP pathway allows malignant progression upon low glucose. Mol Cell 49(6):1049–1059. doi: 10.1016/j.molcel.2013.01.009 PubMedCrossRefGoogle Scholar
  40. Ikesugi K, Yamamoto R, Mulhern ML, Shinohara T (2006) Role of the unfolded protein response (UPR) in cataract formation. Exp Eye Res 83(3):508–516. doi: 10.1016/j.exer.2006.01.033 PubMedCrossRefGoogle Scholar
  41. Itoh K, Tong KI, Yamamoto M (2004) Molecular mechanism activating Nrf2-Keap1 pathway in regulation of adaptive response to electrophiles. Free Radic Biol Med 36(10):1208–1213. doi: 10.1016/j.freeradbiomed.2004.02.075 PubMedCrossRefGoogle Scholar
  42. Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K et al (2012) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8(4):445–544PubMedCentralPubMedCrossRefGoogle Scholar
  43. Kouroku Y, Fujita E, Tanida I, Ueno T, Isoai A, Kumagai H, Ogawa S, Kaufman RJ, Kominami E, Momoi T (2007) ER stress (PERK/eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ 14(2):230–239. doi: 10.1038/sj.cdd.4401984 PubMedCrossRefGoogle Scholar
  44. Kozlowski L, Garvis S, Bedet C, Palladino F (2014) The Caenorhabditis elegans HP1 family protein HPL-2 maintains ER homeostasis through the UPR and hormesis. Proc Natl Acad Sci U S A 111(16):5956–5961. doi: 10.1073/pnas.1321698111 PubMedCentralPubMedCrossRefGoogle Scholar
  45. Lee AS (2007) GRP78 induction in cancer: therapeutic and prognostic implications. Cancer Res 67(8):3496–3499. doi: 10.1158/0008-5472.can-07-0325 PubMedCrossRefGoogle Scholar
  46. Lemaire K, Schuit F (2012) Integrating insulin secretion and ER stress in pancreatic beta-cells. Nat Cell Biol 14(10):979–981. doi: 10.1038/ncb2594 PubMedCrossRefGoogle Scholar
  47. Lin JH, Li H, Yasumura D, Cohen HR, Zhang C, Panning B, Shokat KM, Lavail MM, Walter P (2007) IRE1 signaling affects cell fate during the unfolded protein response. Science 318(5852):944–949PubMedCentralPubMedCrossRefGoogle Scholar
  48. Lowell BB, Shulman GI (2005) Mitochondrial dysfunction and type 2 diabetes. Science 307(5708):384–387. doi: 10.1126/science.1104343 PubMedCrossRefGoogle Scholar
  49. Lu M, Lawrence DA, Marsters S, Acosta-Alvear D, Kimmig P, Mendez AS, Paton AW, Paton JC, Walter P, Ashkenazi A (2014) Cell death. Opposing unfolded-protein-response signals converge on death receptor 5 to control apoptosis. Science 345(6192):98–101. doi: 10.1126/science.1254312 PubMedCrossRefGoogle Scholar
  50. Maas NL, Diehl JA (2014) Molecular Pathways: the PERKs and pitfalls of targeting the unfolded protein response in cancer. Clin Cancer Res. doi: 10.1158/1078-0432.ccr-13-3239 PubMedGoogle Scholar
  51. Marada S, Stewart DP, Bodeen WJ, Han YG, Ogden SK (2013) The unfolded protein response selectively targets active smoothened mutants. Mol Cell Biol 33(12):2375–2387. doi: 10.1128/mcb. 01445-12 PubMedCentralPubMedCrossRefGoogle Scholar
  52. Mattson MP (2008) Hormesis defined. Ageing Res Rev 7:1–7PubMedCentralPubMedCrossRefGoogle Scholar
  53. Matus S, Castillo K, Hetz C (2012) Hormesis: protecting neurons against cellular stress in Parkinson disease. Autophagy 8(6):997–1001. doi: 10.4161/auto.20748 PubMedCentralPubMedCrossRefGoogle Scholar
  54. Mendes CS, Levet C, Chatelain G, Dourlen P, Fouillet A, Dichtel-Danjoy ML, Gambis A, Ryoo HD, Steller H, Mollereau B (2009) ER stress protects from retinal degeneration. Embo J 28(9):1296–1307PubMedCentralPubMedCrossRefGoogle Scholar
  55. Mollereau B (2013) Establishing links between ER-hormesis and cancer. Mol Cell Biol. doi: 10.1128/mcb. 00315-13 PubMedCentralPubMedGoogle Scholar
  56. Motohashi H, Yamamoto M (2004) Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol Med 10(11):549–557. doi: 10.1016/j.molmed.2004.09.003 PubMedCrossRefGoogle Scholar
  57. Munoz JP, Ivanova S, Sanchez-Wandelmer J, Martinez-Cristobal P, Noguera E, Sancho A, Diaz-Ramos A, Hernandez-Alvarez MI, Sebastian D, Mauvezin C, Palacin M, Zorzano A (2013) Mfn2 modulates the UPR and mitochondrial function via repression of PERK. Embo J 32(17):2348–2361. doi: 10.1038/emboj.2013.168 PubMedCentralPubMedCrossRefGoogle Scholar
  58. Nakagawa H, Umemura A, Taniguchi K, Font-Burgada J, Dhar D, Ogata H, Zhong Z, Valasek MA, Seki E, Hidalgo J, Koike K, Kaufman RJ, Karin M (2014) ER stress cooperates with hypernutrition to trigger TNF-dependent spontaneous HCC development. Cancer Cell 26(3):331–343. doi: 10.1016/j.ccr.2014.07.001 PubMedCrossRefGoogle Scholar
  59. Ogata M, Hino S, Saito A, Morikawa K, Kondo S, Kanemoto S, Murakami T, Taniguchi M, Tanii I, Yoshinaga K, Shiosaka S, Hammarback JA, Urano F, Imaizumi K (2006) Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol 26(24):9220–9231PubMedCentralPubMedCrossRefGoogle Scholar
  60. Ozcan U, Cao Q, Yilmaz E, Lee AH, Iwakoshi NN, Ozdelen E, Tuncman G, Gorgun C, Glimcher LH, Hotamisligil GS (2004) Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306(5695):457–461PubMedCrossRefGoogle Scholar
  61. Petrovski G, Das S, Juhasz B, Kertesz A, Tosaki A, Das DK (2011) Cardioprotection by endoplasmic reticulum stress-induced autophagy. Antioxid Redox Signal 14(11):2191–2200. doi: 10.1089/ars.2010.3486 PubMedCrossRefGoogle Scholar
  62. Przedborski S, Levivier M, Kostic V, Jackson-Lewis V, Dollison A, Gash DM, Fahn S, Cadet JL (1991) Sham transplantation protects against 6-hydroxydopamine-induced dopaminergic toxicity in rats: behavioral and morphological evidence. Brain Res 550(2):231–238PubMedCrossRefGoogle Scholar
  63. Quiroga C, Gatica D, Paredes F, Bravo R, Troncoso R, Pedrozo Z, Rodriguez AE, Toro B, Chiong M, Vicencio JM, Hetz C, Lavandero S (2013) Herp depletion protects from protein aggregation by up-regulating autophagy. Biochim Biophys Acta 1833(12):3295–3305. doi: 10.1016/j.bbamcr.2013.09.006 PubMedCrossRefGoogle Scholar
  64. Rouschop KM, van den Beucken T, Dubois L, Niessen H, Bussink J, Savelkouls K, Keulers T, Mujcic H, Landuyt W, Voncken JW, Lambin P, van der Kogel AJ, Koritzinsky M, Wouters BG (2010) The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5. J Clin Invest 120(1):127–141. doi: 10.1172/jci40027 PubMedCentralPubMedCrossRefGoogle Scholar
  65. Ryoo HD, Steller H (2007) Unfolded protein response in Drosophila: why another model can make it fly. Cell Cycle 6(7):830–835PubMedCrossRefGoogle Scholar
  66. Ryoo HD, Domingos PM, Kang MJ, Steller H (2007) Unfolded protein response in a Drosophila model for retinal degeneration. Embo J 26(1):242–252PubMedCentralPubMedCrossRefGoogle Scholar
  67. Scheuner D, Song B, McEwen E, Liu C, Laybutt R, Gillespie P, Saunders T, Bonner-Weir S, Kaufman RJ (2001) Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol Cell 7(6):1165–1176PubMedCrossRefGoogle Scholar
  68. Schulz TJ, Zarse K, Voigt A, Urban N, Birringer M, Ristow M (2007) Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab 6(4):280–293PubMedCrossRefGoogle Scholar
  69. Senee V, Vattem KM, Delepine M, Rainbow LA, Haton C, Lecoq A, Shaw NJ, Robert JJ, Rooman R, Diatloff-Zito C, Michaud JL, Bin-Abbas B, Taha D, Zabel B, Franceschini P, Topaloglu AK, Lathrop GM, Barrett TG, Nicolino M, Wek RC, Julier C (2004) Wolcott-Rallison Syndrome: clinical, genetic, and functional study of EIF2AK3 mutations and suggestion of genetic heterogeneity. Diabetes 53(7):1876–1883PubMedCrossRefGoogle Scholar
  70. Shang L, Hua H, Foo K, Martinez H, Watanabe K, Zimmer M, Kahler DJ, Freeby M, Chung W, LeDuc C, Goland R, Leibel RL, Egli D (2014) beta-cell dysfunction due to increased ER stress in a stem cell model of Wolfram syndrome. Diabetes 63(3):923–933. doi: 10.2337/db13-0717 PubMedCrossRefGoogle Scholar
  71. Sheng R, Liu XQ, Zhang LS, Gao B, Han R, Wu YQ, Zhang XY, Qin ZH (2012) Autophagy regulates endoplasmic reticulum stress in ischemic preconditioning. Autophagy 8(3):310–325PubMedCrossRefGoogle Scholar
  72. Suganya N, Bhakkiyalakshmi E, Suriyanarayanan S, Paulmurugan R, Ramkumar KM (2014) Quercetin ameliorates tunicamycin-induced endoplasmic reticulum stress in endothelial cells. Cell Prolif 47(3):231–240. doi: 10.1111/cpr.12102 PubMedCrossRefGoogle Scholar
  73. Tanaka K, Ogawa N, Asanuma M (2006) Molecular basis of 6-hydroxydopamine-induced caspase activations due to increases in oxidative stress in the mouse striatum. Neurosci Lett 410(2):85–89. doi: 10.1016/j.neulet.2006.08.021 PubMedCrossRefGoogle Scholar
  74. Taylor RC, Dillin A (2013) XBP-1 is a cell-nonautonomous regulator of stress resistance and longevity. Cell 153(7):1435–1447. doi: 10.1016/j.cell.2013.05.042 PubMedCrossRefGoogle Scholar
  75. Valdes P, Mercado G, Vidal RL, Molina C, Parsons G, Court FA, Martinez A, Galleguillos D, Armentano D, Schneider BL, Hetz C (2014) Control of dopaminergic neuron survival by the unfolded protein response transcription factor XBP1. Proc Natl Acad Sci U S A 111(18):6804–6809. doi: 10.1073/pnas.1321845111 PubMedCentralPubMedCrossRefGoogle Scholar
  76. Valenzuela V, Collyer E, Armentano D, Parsons GB, Court FA, Hetz C (2012) Activation of the unfolded protein response enhances motor recovery after spinal cord injury. Cell Death Dis 3:e272. doi: 10.1038/cddis.2012.8 PubMedCrossRefGoogle Scholar
  77. Verfaillie T, Rubio N, Garg AD, Bultynck G, Rizzuto R, Decuypere JP, Piette J, Linehan C, Gupta S, Samali A, Agostinis P (2012) PERK is required at the ER-mitochondrial contact sites to convey apoptosis after ROS-based ER stress. Cell Death Differ 19(11):1880–1891. doi: 10.1038/cdd.2012.74 PubMedCentralPubMedCrossRefGoogle Scholar
  78. Vidal RL, Hetz C (2012) Crosstalk between the UPR and autophagy pathway contributes to handling cellular stress in neurodegenerative disease. Autophagy 8(6):970–972. doi: 10.4161/auto.20139 PubMedCentralPubMedCrossRefGoogle Scholar
  79. Vidal RL, Figueroa A, Court FA, Thielen P, Molina C, Wirth C, Caballero B, Kiffin R, Segura-Aguilar J, Cuervo AM, Glimcher LH, Hetz C (2012) Targeting the UPR transcription factor XBP1 protects against Huntington’s disease through the regulation of FoxO1 and autophagy. Hum Mol Genet. doi: 10.1093/hmg/dds040 Google Scholar
  80. Walter L, Hajnoczky G (2005) Mitochondria and endoplasmic reticulum: the lethal interorganelle cross-talk. J Bioenerg Biomembr 37(3):191–206. doi: 10.1007/s10863-005-6600-x PubMedCrossRefGoogle Scholar
  81. Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334(6059):1081–1086. doi: 10.1126/science.1209038 PubMedCrossRefGoogle Scholar
  82. Wang S, Kaufman RJ (2012) The impact of the unfolded protein response on human disease. J Cell Biol 197(7):857–867. doi: 10.1083/jcb.201110131 PubMedCentralPubMedCrossRefGoogle Scholar
  83. Wei Y, Pattingre S, Sinha S, Bassik M, Levine B (2008) JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell 30(6):678–688. doi: 10.1016/j.molcel.2008.06.001 PubMedCentralPubMedCrossRefGoogle Scholar
  84. Wiseman RL, Zhang Y, Lee KP, Harding HP, Haynes CM, Price J, Sicheri F, Ron D (2010) Flavonol activation defines an unanticipated ligand-binding site in the kinase-RNase domain of IRE1. Mol Cell 38(2):291–304PubMedCentralPubMedCrossRefGoogle Scholar
  85. Xu P, Das M, Reilly J, Davis RJ (2011) JNK regulates FoxO-dependent autophagy in neurons. Genes Dev 25(4):310–322. doi: 10.1101/gad.1984311 PubMedCentralPubMedCrossRefGoogle Scholar
  86. Xue X, Piao JH, Nakajima A, Sakon-Komazawa S, Kojima Y, Mori K, Yagita H, Okumura K, Harding H, Nakano H (2005) Tumor necrosis factor alpha (TNFalpha) induces the unfolded protein response (UPR) in a reactive oxygen species (ROS)-dependent fashion, and the UPR counteracts ROS accumulation by TNFalpha. J Biol Chem 280(40):33917–33925PubMedCrossRefGoogle Scholar
  87. Yuan Y, Cao P, Smith MA, Kramp K, Huang Y, Hisamoto N, Matsumoto K, Hatzoglou M, Jin H, Feng Z. (2011) Dysregulated LRRK2 signaling in response to endoplasmic reticulum stress leads to dopaminergic neuron degeneration in C. elegans. PLoS One. 6(8):e22354.Google Scholar
  88. Zhang L, Nosak C, Sollazzo P, Odisho T, Volchuk A (2014) IRE1 inhibition perturbs the unfolded protein response in a pancreatic beta-cell line expressing mutant proinsulin, but does not sensitize the cells to apoptosis. BMC Cell Biol 15(1):29. doi: 10.1186/1471-2121-15-29 PubMedCentralPubMedCrossRefGoogle Scholar
  89. Zhao Y, Yang J, Liao W, Liu X, Zhang H, Wang S, Wang D, Feng J, Yu L, Zhu WG (2010) Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity. Nat Cell Biol 12(7):665–675. doi: 10.1038/ncb2069 PubMedCrossRefGoogle Scholar
  90. Zheng M, Kim SK, Joe Y, Back SH, Cho HR, Kim HP, Ignarro LJ, Chung HT (2012) Sensing endoplasmic reticulum stress by protein kinase RNA-like endoplasmic reticulum kinase promotes adaptive mitochondrial DNA biogenesis and cell survival via heme oxygenase-1/carbon monoxide activity. Faseb J 26(6):2558–2568. doi: 10.1096/fj.11-199604 PubMedCrossRefGoogle Scholar

Copyright information

© The International CCN Society 2014

Authors and Affiliations

  1. 1.Laboratory of Molecular Biology of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, UMS 3444 Biosciences Lyon GerlandUniversity of LyonLyonFrance
  2. 2.UMR CNRS 5286, INSERM 1052University of Lyon, Cancer Research Center of LyonLyonFrance

Personalised recommendations