Osteopontin, inflammation and myogenesis: influencing regeneration, fibrosis and size of skeletal muscle

  • Charles N. PagelEmail author
  • Dimuthu K. Wasgewatte Wijesinghe
  • Neda Taghavi Esfandouni
  • Eleanor J. Mackie


Osteopontin is a multifunctional matricellular protein that is expressed by many cell types. Through cell-matrix and cell-cell interactions the molecule elicits a number of responses from a broad range of target cells via its interaction with integrins and the hyaluronan receptor CD44. In many tissues osteopontin has been found to be involved in important physiological and pathological processes, including tissue repair, inflammation and fibrosis. Post-natal skeletal muscle is a highly differentiated and specialised tissue that retains a remarkable capacity for regeneration following injury. Regeneration of skeletal muscle requires the co-ordinated activity of inflammatory cells that infiltrate injured muscle and are responsible for initiating muscle fibre degeneration and phagocytosis of necrotic tissue, and muscle precursor cells that regenerate the injured muscle fibres. This review focuses on the current evidence that osteopontin plays multiple roles in skeletal muscle, with particular emphasis on its role in regeneration and fibrosis following injury, and in determining the severity of myopathic diseases such as Duchenne muscular dystrophy.


Osteopontin Regeneration Skeletal muscle Whole muscle grafting Myoblast Neutrophil Macrophage 


  1. Allen RE, Sheehan SM, Taylor RG, Kendall TL, Rice GM (1995) Hepatocyte growth factor activates quiescent skeletal muscle satellite cells in vitro. J Cell Physiol 165:307–312PubMedCrossRefGoogle Scholar
  2. Andreetta F, Bernasconi P, Baggi F, Ferro P, Oliva L, Arnoldi E, Cornelio F, Mantegazza R, Confalonieri P (2006) Immunomodulation of TGF-beta 1 in mdx mouse inhibits connective tissue proliferation in diaphragm but increases inflammatory response: implications for antifibrotic therapy. J Neuroimmunol 175:77–86PubMedCrossRefGoogle Scholar
  3. Ashkar S, Weber GF, Panoutsakopoulou V, Sanchirico ME, Jansson M, Zawaideh S, Rittling SR, Denhardt DT, Glimcher MJ, Cantor H (2000) Eta-1 (osteopontin): an early component of type-1 (cell-mediated) immunity. Science 287:860–864PubMedCrossRefGoogle Scholar
  4. Banerjee A, Apte UM, Smith R, Ramaiah SK (2006) Higher neutrophil infiltration mediated by osteopontin is a likely contributing factor to the increased susceptibility of females to alcoholic liver disease. J Pathol 208:473–485PubMedCrossRefGoogle Scholar
  5. Barbosa-Souza V, Contin DK, Filho WB, de Araujo AL, Irazusta SP, da Cruz-Hofling MA (2011) Osteopontin, a chemotactic protein with cytokine-like properties, is up-regulated in muscle injury caused by Bothrops lanceolatus (fer-de-lance) snake venom. Toxicon 58:398–409PubMedCrossRefGoogle Scholar
  6. Bello L, Piva L, Barp A, Taglia A, Picillo E, Vasco G, Pane M, Previtali SC, Torrente Y, Gazzerro E, Motta MC, Grieco GS, Napolitano S, Magri F, D’Amico A, Astrea G, Messina S, Sframeli M, Vita GL, Boffi P, Mongini T, Ferlini A, Gualandi F, Soraru G, Ermani M, Vita G, Battini R, Bertini E, Comi GP, Berardinelli A, Minetti C, Bruno C, Mercuri E, Politano L, Angelini C, Hoffman EP, Pegoraro E (2012) Importance of SPP1 genotype as a covariate in clinical trials in Duchenne muscular dystrophy. Neurology 79:159–162PubMedCentralPubMedCrossRefGoogle Scholar
  7. Berman JS, Serlin D, Li X, Whitley G, Hayes J, Rishikof DC, Ricupero DA, Liaw L, Goetschkes M, O’Regan AW (2004) Altered bleomycin-induced lung fibrosis in osteopontin-deficient mice. Am J Physiol Lung Cell Mol Physiol 286:L1311–L1318PubMedCrossRefGoogle Scholar
  8. Chambers AF, Wilson SM, Kerkvliet N, O’Malley FP, Harris JF, Casson AG (1996) Osteopontin expression in lung cancer. Lung Cancer 15:311–323PubMedCrossRefGoogle Scholar
  9. Chen G, Birnbaum RS, Yablonka-Reuveni Z, Quinn LS (1994) Separation of mouse crushed muscle extract into distinct mitogenic activities by heparin affinity chromatography. J Cell Physiol 160:563–572PubMedCrossRefGoogle Scholar
  10. Christensen B, Kazanecki CC, Petersen TE, Rittling SR, Denhardt DT, Sorensen ES (2007) Cell type-specific post-translational modifications of mouse osteopontin are associated with different adhesive properties. J Biol Chem 282:19463–19472PubMedCrossRefGoogle Scholar
  11. Collins CA, Olsen I, Zammit PS, Heslop L, Petrie A, Partridge TA, Morgan JE (2005) Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122:289–301PubMedCrossRefGoogle Scholar
  12. Deng B, Wehling-Henricks M, Villalta SA, Wang Y, Tidball JG (2012) IL-10 triggers changes in macrophage phenotype that promote muscle growth and regeneration. J Immunol 189:3669–3680PubMedCentralPubMedCrossRefGoogle Scholar
  13. Denhardt DT, Noda M, O’Regan AW, Pavlin D, Berman JS (2001) Osteopontin as a means to cope with environmental insults: regulation of inflammation, tissue remodeling, and cell survival. J Clin Invest 107:1055–1061PubMedCentralPubMedCrossRefGoogle Scholar
  14. Duvall CL, Taylor WR, Weiss D, Wojtowicz AM, Guldberg RE (2007) Impaired angiogenesis, early callus formation, and late stage remodeling in fracture healing of osteopontin-deficient mice. J Bone Miner Res 22:286–297PubMedCrossRefGoogle Scholar
  15. Ervasti JM (2007) Dystrophin, its interactions with other proteins, and implications for muscular dystrophy. Biochim Biophys Acta 1772:108–117PubMedCrossRefGoogle Scholar
  16. Florini JR, Ewton DZ, Magri KA (1991) Hormones, growth factors, and myogenic differentiation. Annu Rev Physiol 53:201–216PubMedCrossRefGoogle Scholar
  17. Giachelli CM, Lombardi D, Johnson RJ, Murry CE, Almeida M (1998) Evidence for a role of osteopontin in macrophage infiltration in response to pathological stimuli in vivo. Am J Pathol 152:353–358PubMedCentralPubMedGoogle Scholar
  18. Giacopelli F, Marciano R, Pistorio A, Catarsi P, Canini S, Karsenty G, Ravazzolo R (2004) Polymorphisms in the osteopontin promoter affect its transcriptional activity. Physiol Genomics 20:87–96PubMedCrossRefGoogle Scholar
  19. Gimba ER, Tilli TM (2013) Human osteopontin splicing isoforms: known roles, potential clinical applications and activated signaling pathways. Cancer Lett 331:11–17PubMedCrossRefGoogle Scholar
  20. Hashimoto M, Sun D, Rittling SR, Denhardt DT, Young W (2007) Osteopontin-deficient mice exhibit less inflammation, greater tissue damage, and impaired locomotor recovery from spinal cord injury compared with wild-type controls. J Neurosci 27:3603–3611PubMedCrossRefGoogle Scholar
  21. Haslett JN, Sanoudou D, Kho AT, Bennett RR, Greenberg SA, Kohane IS, Beggs AH, Kunkel LM (2002) Gene expression comparison of biopsies from Duchenne muscular dystrophy (DMD) and normal skeletal muscle. Proc Natl Acad Sci U S A 99:15000–15005PubMedCentralPubMedCrossRefGoogle Scholar
  22. Hirata A, Masuda S, Tamura T, Kai K, Ojima K, Fukase A, Motoyoshi K, Kamakura K, Miyagoe-Suzuki Y, Takeda S (2003) Expression profiling of cytokines and related genes in regenerating skeletal muscle after cardiotoxin injection: a role for osteopontin. Am J Pathol 163:203–215PubMedCentralPubMedCrossRefGoogle Scholar
  23. Hoffman EP, Brown RH Jr, Kunkel LM (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51:919–928PubMedCrossRefGoogle Scholar
  24. Hoffman EP, Gordish-Dressman H, McLane VD, Devaney JM, Thompson PD, Visich P, Gordon PM, Pescatello LS, Zoeller RF, Moyna NM, Angelopoulos TJ, Pegoraro E, Cox GA, Clarkson PM (2013) Alterations in osteopontin modify muscle size in females in both humans and mice. Med Sci Sports Exerc 45:1060–1068PubMedCentralPubMedCrossRefGoogle Scholar
  25. Inoue M, Shinohara ML (2011) Intracellular osteopontin (iOPN) and immunity. Immunol Res 49:160–172PubMedCentralPubMedCrossRefGoogle Scholar
  26. Joulia D, Bernardi H, Garandel V, Rabenoelina F, Vernus B, Cabello G (2003) Mechanisms involved in the inhibition of myoblast proliferation and differentiation by myostatin. Exp Cell Res 286:263–275PubMedCrossRefGoogle Scholar
  27. Kazanecki CC, Uzwiak DJ, Denhardt DT (2007) Control of osteopontin signaling and function by post-translational phosphorylation and protein folding. J Cell Biochem 102:912–924PubMedCrossRefGoogle Scholar
  28. Koh A, da Silva AP, Bansal AK, Bansal M, Sun C, Lee H, Glogauer M, Sodek J, Zohar R (2007) Role of osteopontin in neutrophil function. Immunology 122:466–475PubMedCentralPubMedCrossRefGoogle Scholar
  29. Lescaudron L, Peltekian E, Fontaine-Perus J, Paulin D, Zampieri M, Garcia L, Parrish E (1999) Blood borne macrophages are essential for the triggering of muscle regeneration following muscle transplant. Neuromuscul Disord 9:72–80PubMedCrossRefGoogle Scholar
  30. Liaw L, Almeida M, Hart CE, Schwartz SM, Giachelli CM (1994) Osteopontin promotes vascular cell adhesion and spreading and is chemotactic for smooth muscle cells in vitro. Circ Res 74:214–224PubMedCrossRefGoogle Scholar
  31. Mori R, Shaw TJ, Martin P (2008) Molecular mechanisms linking wound inflammation and fibrosis: knockdown of osteopontin leads to rapid repair and reduced scarring. J Exp Med 205:43–51PubMedCentralPubMedCrossRefGoogle Scholar
  32. Mukherjee BB, Nemir M, Beninati S, Cordella-Miele E, Singh K, Chackalaparampil I, Shanmugam V, DeVouge MW, Mukherjee AB (1995) Interaction of osteopontin with fibronectin and other extracellular matrix molecules. Ann N Y Acad Sci 760:201–212PubMedCrossRefGoogle Scholar
  33. Murani E, Muraniova M, Ponsuksili S, Schellander K, Wimmers K (2007) Identification of genes differentially expressed during prenatal development of skeletal muscle in two pig breeds differing in muscularity. BMC Dev Biol 7:109PubMedCentralPubMedCrossRefGoogle Scholar
  34. Murani E, Ponsuksili S, Seyfert HM, Shi X, Wimmers K (2009) Dual effect of a single nucleotide polymorphism in the first intron of the porcine secreted phosphoprotein 1 gene: allele-specific binding of C/EBP beta and activation of aberrant splicing. BMC Mol Biol 10:96PubMedCentralPubMedCrossRefGoogle Scholar
  35. Nguyen HX, Tidball JG (2003) Interactions between neutrophils and macrophages promote macrophage killing of rat muscle cells in vitro. J Physiol 547:125–132PubMedCentralPubMedCrossRefGoogle Scholar
  36. O’Brien ER, Garvin MR, Stewart DK, Hinohara T, Simpson JB, Schwartz SM, Giachelli CM (1994) Osteopontin is synthesized by macrophage, smooth muscle, and endothelial cells in primary and restenotic human coronary atherosclerotic plaques. Arterioscler Thromb 14:1648–1656PubMedCrossRefGoogle Scholar
  37. O’Regan A, Berman JS (2000) Osteopontin: a key cytokine in cell-mediated and granulomatous inflammation. Int J Exp Pathol 81:373–390PubMedCentralPubMedCrossRefGoogle Scholar
  38. O’Regan AW, Chupp GL, Lowry JA, Goetschkes M, Mulligan N, Berman JS (1999) Osteopontin is associated with T cells in sarcoid granulomas and has T cell adhesive and cytokine-like properties in vitro. J Immunol 162:1024–1031PubMedGoogle Scholar
  39. Paliwal P, Pishesha N, Wijaya D, Conboy IM (2012) Age dependent increase in the levels of osteopontin inhibits skeletal muscle regeneration. Aging (Albany NY) 4:553–566PubMedCentralGoogle Scholar
  40. Pardo A, Gibson K, Cisneros J, Richards TJ, Yang Y, Becerril C, Yousem S, Herrera I, Ruiz V, Selman M, Kaminski N (2005) Up-regulation and profibrotic role of osteopontin in human idiopathic pulmonary fibrosis. PLoS Med 2:e251PubMedCentralPubMedCrossRefGoogle Scholar
  41. Partridge TA (1997) Models of dystrophinopathy, pathological mechanisms and assessment of therapies. In: Brown SC, Lucy JA (eds) Dystrophin: Gene Protein and Cell Biology. Cambridge University Press, Cambridge, pp 310–311Google Scholar
  42. Patarca R, Freeman GJ, Singh RP, Wei FY, Durfee T, Blattner F, Regnier DC, Kozak CA, Mock BA, Morse HC 3rd et al (1989) Structural and functional studies of the early T lymphocyte activation 1 (Eta-1) gene. Definition of a novel T cell-dependent response associated with genetic resistance to bacterial infection. J Exp Med 170:145–161PubMedCrossRefGoogle Scholar
  43. Pegoraro E, Hoffman EP, Piva L, Gavassini BF, Cagnin S, Ermani M, Bello L, Soraru G, Pacchioni B, Bonifati MD, Lanfranchi G, Angelini C, Kesari A, Lee I, Gordish-Dressman H, Devaney JM, McDonald CM, Cooperative International Neuromuscular Research, G (2011) SPP1 genotype is a determinant of disease severity in Duchenne muscular dystrophy. Neurology 76:219–226PubMedCentralPubMedCrossRefGoogle Scholar
  44. Petrof BJ, Shrager JB, Stedman HH, Kelly AM, Sweeney HL (1993) Dystrophin protects the sarcolemma from stresses developed during muscle contraction. Proc Natl Acad Sci U S A 90:3710–3714PubMedCentralPubMedCrossRefGoogle Scholar
  45. Piva L, Gavassini BF, Bello L, Fanin M, Soraru G, Barp A, Ermani M, Angelini C, Hoffman EP, Pegoraro E (2012) TGFBR2 but not SPP1 genotype modulates osteopontin expression in Duchenne muscular dystrophy muscle. J Pathol 228:251–259PubMedCrossRefGoogle Scholar
  46. Porter JD, Khanna S, Kaminski HJ, Rao JS, Merriam AP, Richmonds CR, Leahy P, Li J, Guo W, Andrade FH (2002) A chronic inflammatory response dominates the skeletal muscle molecular signature in dystrophin-deficient mdx mice. Hum Mol Genet 11:263–272PubMedCrossRefGoogle Scholar
  47. Saitoh Y, Kuratsu J, Takeshima H, Yamamoto S, Ushio Y (1995) Expression of osteopontin in human glioma. Its correlation with the malignancy. Lab Invest 72:55–63PubMedGoogle Scholar
  48. Sam F, Xie Z, Ooi H, Kerstetter DL, Colucci WS, Singh M, Singh K (2004) Mice lacking osteopontin exhibit increased left ventricular dilation and reduced fibrosis after aldosterone infusion. Am J Hypertens 17:188–193PubMedCrossRefGoogle Scholar
  49. Standal T, Borset M, Sundan A (2004) Role of osteopontin in adhesion, migration, cell survival and bone remodeling. Exp Oncol 26:179–184PubMedGoogle Scholar
  50. Stedman HH, Sweeney HL, Shrager JB, Maguire HC, Panettieri RA, Petrof B, Narusawa M, Leferovich JM, Sladky JT, Kelly AM (1991) The mdx mouse diaphragm reproduces the degenerative changes of Duchenne muscular dystrophy. Nature 352:536–539PubMedCrossRefGoogle Scholar
  51. Tatsumi R, Anderson JE, Nevoret CJ, Halevy O, Allen RE (1998) HGF/SF is present in normal adult skeletal muscle and is capable of activating satellite cells. Dev Biol 194:114–128PubMedCrossRefGoogle Scholar
  52. Ten Broek RW, Grefte S, Von den Hoff JW (2010) Regulatory factors and cell populations involved in skeletal muscle regeneration. J Cell Physiol 224:7–16PubMedGoogle Scholar
  53. Tidball JG (2005) Inflammatory processes in muscle injury and repair. Am J Physiol Regul Integr Comp Physiol 288:R345–R353PubMedCrossRefGoogle Scholar
  54. Tidball JG (2011) Mechanisms of muscle injury, repair, and regeneration. Compr Physiol 1:2029–2062PubMedGoogle Scholar
  55. Turk R, Sterrenburg E, van der Wees CG, de Meijer EJ, de Menezes RX, Groh S, Campbell KP, Noguchi S, van Ommen GJ, den Dunnen JT, ‘t Hoen PA (2006) Common pathological mechanisms in mouse models for muscular dystrophies. FASEB J 20:127–129PubMedGoogle Scholar
  56. Uaesoontrachoon K, Yoo HJ, Tudor EM, Pike RN, Mackie EJ, Pagel CN (2008) Osteopontin and skeletal muscle myoblasts: association with muscle regeneration and regulation of myoblast function in vitro. Int J Biochem Cell Biol 40:2303–2314PubMedCrossRefGoogle Scholar
  57. Uaesoontrachoon K, Wasgewatte Wijesinghe DK, Mackie EJ, Pagel CN (2013) Osteopontin deficiency delays inflammatory infiltration and the onset of muscle regeneration in a mouse model of muscle injury. Dis Model Mech 6:197–205PubMedCentralPubMedCrossRefGoogle Scholar
  58. Vetrone SA, Montecino-Rodriguez E, Kudryashova E, Kramerova I, Hoffman EP, Liu SD, Miceli MC, Spencer MJ (2009) Osteopontin promotes fibrosis in dystrophic mouse muscle by modulating immune cell subsets and intramuscular TGF-beta. J Clin Invest 119:1583–1594PubMedCentralPubMedCrossRefGoogle Scholar
  59. Villalta SA, Deng B, Rinaldi C, Wehling-Henricks M, Tidball JG (2011) IFN-gamma promotes muscle damage in the mdx mouse model of Duchenne muscular dystrophy by suppressing M2 macrophage activation and inhibiting muscle cell proliferation. J Immunol 187:5419–5428PubMedCentralPubMedCrossRefGoogle Scholar
  60. von der Mark K, Ocalan M (1989) Antagonistic effects of laminin and fibronectin on the expression of the myogenic phenotype. Differentiation 40:150–157PubMedCrossRefGoogle Scholar
  61. Weinreb M, Shinar D, Rodan GA (1990) Different pattern of alkaline phosphatase, osteopontin, and osteocalcin expression in developing rat bone visualized by in situ hybridization. J Bone Miner Res 5:831–842PubMedCrossRefGoogle Scholar
  62. Yokosaki Y, Matsuura N, Sasaki T, Murakami I, Schneider H, Higashiyama S, Saitoh Y, Yamakido M, Taooka Y, Sheppard D (1999) The integrin alpha(9)beta(1) binds to a novel recognition sequence (SVVYGLR) in the thrombin-cleaved amino-terminal fragment of osteopontin. J Biol Chem 274:36328–36334PubMedCrossRefGoogle Scholar
  63. Zammit PS, Partridge TA, Yablonka-Reuveni Z (2006) The skeletal muscle satellite cell: the stem cell that came in from the cold. J Histochem Cytochem 54:1177–1191PubMedCrossRefGoogle Scholar
  64. Zanotti S, Gibertini S, Di Blasi C, Cappelletti C, Bernasconi P, Mantegazza R, Morandi L, Mora M (2011) Osteopontin is highly expressed in severely dystrophic muscle and seems to play a role in muscle regeneration and fibrosis. Histopathology 59:1215–1228PubMedCrossRefGoogle Scholar
  65. Zohar R, Lee W, Arora P, Cheifetz S, McCulloch C, Sodek J (1997) Single cell analysis of intracellular osteopontin in osteogenic cultures of fetal rat calvarial cells. J Cell Physiol 170:88–100PubMedCrossRefGoogle Scholar

Copyright information

© The International CCN Society 2013

Authors and Affiliations

  • Charles N. Pagel
    • 1
    Email author
  • Dimuthu K. Wasgewatte Wijesinghe
    • 1
  • Neda Taghavi Esfandouni
    • 1
  • Eleanor J. Mackie
    • 1
  1. 1.Faculty of Veterinary ScienceUniversity of MelbourneParkvilleAustralia

Personalised recommendations