Advertisement

Journal of Cell Communication and Signaling

, Volume 6, Issue 3, pp 169–173 | Cite as

A pathway map of prolactin signaling

  • Aneesha Radhakrishnan
  • Rajesh Raju
  • Nirvana Tuladhar
  • Tejaswini Subbannayya
  • Joji Kurian Thomas
  • Renu Goel
  • Deepthi Telikicherla
  • Shyam Mohan Palapetta
  • B. Abdul Rahiman
  • Desai Dattatraya Venkatesh
  • Kulkarni-Kale Urmila
  • H. C. Harsha
  • Premendu Prakash Mathur
  • T. S. Keshava Prasad
  • Akhilesh Pandey
  • Carrie Shemanko
  • Aditi Chatterjee
Technical Report

Introduction

Prolactin (PRL) is a pleiotropic polypeptide hormone secreted primarily by the lactotrophic cells of anterior pituitary gland in vertebrates (Freeman et al. 2000). This hormone family includes placental lactogen (PL) and growth hormone (GH) (Corbacho et al. 2002). Prolactin plays a major role in lactation and reproduction and has been shown to have a multitude of effects relating to growth, development, metabolism, immunoregulation and protection (Ben-Jonathan et al. 2006). The prolactin signaling pathway is initiated by the binding of prolactin with the prolactin receptor (PRLR), a member of class I cytokine receptor superfamily (Binart et al. 2000), which is expressed in a variety of tissues. The PRLR comprises of an extracellular ligand binding domain, a transmembrane domain and an intracellular domain. The PRLR lacks intrinsic kinase activity and transduces signal through kinases that interact with its cytoplasmic tail. Three constitutively active variants of the...

Keywords

Prolactin Prolactin Receptor Pathway Diagram Human Prolactin Prolactin Signaling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

PRL

Prolactin

PRLR

Prolactin receptor

PL

Placental lactogen

GH

Growth hormone

JAK2

Janus kinase 2

STAT1

Signal transducer and activator of transcription 1 91 kDa

MAPK

Mitogen activated protein kinase

PI3-Kinase

Phosphoinositide 3-kinase

AKT1

v-akt murine thymoma viral oncogene homolog 1

RAC1

ras-related C3 botulinum toxin substrate 1

IRS1

Insulin receptor substrate 1

IRS2

Insulin receptor substrate 2

MTOR

Mammalian target of rapamycin

GSK3B

glycogen synthase kinase 3 beta

PAK1

p21 protein (Cdc42/Rac)-activated kinase 1

BioPAX

Biological PAthway eXchange

PSI-MI

Proteomics Standards Initiative for Molecular Interaction

SBML

Systems Biology Markup Language

Notes

Acknowledgments

We thank the Department of Biotechnology (DBT), Government of India for research support to the Institute of Bioinformatics, Bangalore. Aneesha Radhakrishnan and Shyam Mohan Palapetta are recipients of Senior Research Fellowship from the Council of Scientific and Industrial Research (CSIR), New Delhi, India. Deepthi Telikicherla is a recipient of Senior Research Fellowship from Indian Council of Medical Research (ICMR), Government of India. P. P. Mathur thanks the Department of Biotechnology (DBT), Government of India and Department of Information Technology (DIT), Government of India for financial support (Project Nos.: BT/BI/03/015/2002 and DIT/R&D/BIO/15(9)/2007). Dattatraya V. Desai and Urmila Kulkarni-Kale gratefully acknowledge the facilities of the Bioinformatics Centre, University of Pune and the ‘Centre of Excellence’ grant by the Department of Biotechnology (DBT), Government of India as well as the Department of Information Technology (DIT), Government of India. H. C Harsha is a Wellcome Trust/DBT India Alliance Early Career Fellow. Dr. Carrie Shemanko is the “pathway authority” of this manuscript and has reviewed the molecular interactions.

References

  1. Ben-Jonathan N, Hugo ER, Brandebourg TD, LaPensee CR (2006) Focus on prolactin as a metabolic hormone. Trends Endocrinol Metab 17:110–116PubMedCrossRefGoogle Scholar
  2. Binart N, Ormandy CJ, Kelly PA (2000) Mammary gland development and the prolactin receptor. Adv Exp Med Biol 480:85–92PubMedCrossRefGoogle Scholar
  3. Bishop JD, Nien WL, Dauphinee SM, Too CK (2006) Prolactin activates mammalian target-of-rapamycin through phosphatidylinositol 3-kinase and stimulates phosphorylation of p70S6K and 4E-binding protein-1 in lymphoma cells. J Endocrinol 190:307–312PubMedCrossRefGoogle Scholar
  4. Bouilly J, Sonigo C, Auffret J, Gibori G, Binart N (2011) Prolactin signaling mechanisms in ovary. Mol Cell EndocrinolGoogle Scholar
  5. Clevenger CV, Furth PA, Hankinson SE, Schuler LA (2003) The role of prolactin in mammary carcinoma. Endocr Rev 24:1–27PubMedCrossRefGoogle Scholar
  6. Clevenger CV, Gadd SL, Zheng J (2009) New mechanisms for PRLr action in breast cancer. Trends Endocrinol Metab 20:223–229PubMedCrossRefGoogle Scholar
  7. Corbacho AM, Nava G, Eiserich JP, Noris G, Macotela Y, Struman I, Martinez De La Escalera G, Freeman BA, Clapp C (2000) Proteolytic cleavage confers nitric oxide synthase inducing activity upon prolactin. J Biol Chem 275:13183–13186PubMedCrossRefGoogle Scholar
  8. Corbacho AM, Martinez De La Escalera G, Clapp C (2002) Roles of prolactin and related members of the prolactin/growth hormone/placental lactogen family in angiogenesis. J Endocrinol 173:219–238PubMedCrossRefGoogle Scholar
  9. Das R, Vonderhaar BK (1996) Involvement of SHC, GRB2, SOS and RAS in prolactin signal transduction in mammary epithelial cells. Oncogene 13:1139–1145PubMedGoogle Scholar
  10. DaSilva L, Rui H, Erwin RA, Howard OM, Kirken RA, Malabarba MG, Hackett RH, Larner AC, Farrar WL (1996) Prolactin recruits STAT1, STAT3 and STAT5 independent of conserved receptor tyrosines TYR402, TYR479, TYR515 and TYR580. Mol Cell Endocrinol 117:131–140PubMedCrossRefGoogle Scholar
  11. Demir E, Cary MP, Paley S, Fukuda K, Lemer C, Vastrik I, Wu G, D’Eustachio P, Schaefer C et al (2010) The BioPAX community standard for pathway data sharing. Nat Biotechnol 28:935–942PubMedCrossRefGoogle Scholar
  12. Dominguez-Caceres MA, Garcia-Martinez JM, Calcabrini A, Gonzalez L, Porque PG, Leon J, Martin-Perez J (2004) Prolactin induces c-Myc expression and cell survival through activation of Src/Akt pathway in lymphoid cells. Oncogene 23:7378–7390PubMedCrossRefGoogle Scholar
  13. Freeman ME, Kanyicska B, Lerant A, Nagy G (2000) Prolactin: structure, function, and regulation of secretion. Physiol Rev 80:1523–1631PubMedGoogle Scholar
  14. Goel R, Muthusamy B, Pandey A, Prasad TS (2011) Human protein reference database and human proteinpedia as discovery resources for molecular biotechnology. Mol Biotechnol 48:87–95PubMedCrossRefGoogle Scholar
  15. Goel R, Raju R, Maharudraiah J, Kumar GSS, Ghosh K, Kumar A, Lashmi PT, Sharma J, Sharma R et al (2012) A signaling network of thyroid-stimulating hormone. J Proteomics BioinformaticsGoogle Scholar
  16. Goffin V, Bogorad RL, Touraine P (2010) Identification of gain-of-function variants of the human prolactin receptor. Methods Enzymol 484:329–355PubMedCrossRefGoogle Scholar
  17. Hermjakob H, Montecchi-Palazzi L, Bader G, Wojcik J, Salwinski L, Ceol A, Moore S, Orchard S, Sarkans U et al (2004) The HUPO PSI’s molecular interaction format–a community standard for the representation of protein interaction data. Nat Biotechnol 22:177–183PubMedCrossRefGoogle Scholar
  18. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, Bornstein BJ, Bray D et al (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19:524–531PubMedCrossRefGoogle Scholar
  19. Kandasamy K, Keerthikumar S, Raju R, Keshava Prasad TS, Ramachandra YL, Mohan S, Pandey A (2009) PathBuilder–open source software for annotating and developing pathway resources. Bioinformatics 25:2860–2862PubMedCrossRefGoogle Scholar
  20. Kandasamy K, Mohan SS, Raju R, Keerthikumar S, Kumar GS, Venugopal AK, Telikicherla D, Navarro JD, Mathivanan S et al (2010) NetPath: a public resource of curated signal transduction pathways. Genome Biol 11:R3PubMedCrossRefGoogle Scholar
  21. Martini JF, Piot C, Humeau LM, Struman I, Martial JA, Weiner RI (2000) The antiangiogenic factor 16K PRL induces programmed cell death in endothelial cells by caspase activation. Mol Endocrinol 14:1536–1549PubMedCrossRefGoogle Scholar
  22. Nanjappa V, Raju R, Muthusamy B, Sharma J, Thomas JK, Nidhina PAH, Harsha HC, Pandey A, Anilkumar G et al (2011) A comprehensive curated reaction map of leptin signaling pathway. J Proteomics Bioinformatics 4:184–189Google Scholar
  23. Pezet A, Buteau H, Kelly PA, Edery M (1997) The last proline of Box 1 is essential for association with JAK2 and functional activation of the prolactin receptor. Mol Cell Endocrinol 129:199–208PubMedCrossRefGoogle Scholar
  24. Piazza TM, Lu JC, Carver KC, Schuler LA (2009) SRC family kinases accelerate prolactin receptor internalization, modulating trafficking and signaling in breast cancer cells. Mol Endocrinol 23:202–212PubMedCrossRefGoogle Scholar
  25. Raju R, Balakrishnan L, Nanjappa V, Bhattacharjee M, Getnet D, Muthusamy B, Kurian Thomas J, Sharma J, Rahiman BA et al. (2011a) A comprehensive manually curated reaction map of RANKL/RANK-signaling pathway. Database (Oxford) 2011:bar021Google Scholar
  26. Raju R, Nanjappa V, Balakrishnan L, Radhakrishnan A, Thomas JK, Sharma J, Tian M, Palapetta SM, Subbannayya T et al (2011b) NetSlim: high-confidence curated signaling maps. Database (Oxford) 2011:bar032Google Scholar
  27. Rider L, Shatrova A, Feener EP, Webb L, Diakonova M (2007) JAK2 tyrosine kinase phosphorylates PAK1 and regulates PAK1 activity and functions. J Biol Chem 282:30985–30996PubMedCrossRefGoogle Scholar
  28. Struman I, Bentzien F, Lee H, Mainfroid V, D'Angelo G, Goffin V, Weiner RI, Martial JA (1999) Opposing actions of intact and N-terminal fragments of the human prolactin/growth hormone family members on angiogenesis: an efficient mechanism for the regulation of angiogenesis. Proc Natl Acad Sci USA 96:1246-1251Google Scholar
  29. Telikicherla D, Ambekar A, Palapetta SM, Dwivedi SB, Raju R, Sharma J, Prasad TS, Ramachandra YL, Mohan SS et al (2011) A comprehensive curated resource for Follicle Stimulating Hormone signaling. BMC Res Notes 4:408PubMedCrossRefGoogle Scholar
  30. Utama FE, Tran TH, Ryder A, LeBaron MJ, Parlow AF, Rui H (2009) Insensitivity of human prolactin receptors to nonhuman prolactins: relevance for experimental modeling of prolactin receptor-expressing human cells. Endocrinology 150:1782–1790PubMedCrossRefGoogle Scholar
  31. van Iersel MP, Kelder T, Pico AR, Hanspers K, Coort S, Conklin BR, Evelo C (2008) Presenting and exploring biological pathways with PathVisio. BMC Bioinforma 9:399CrossRefGoogle Scholar
  32. Yamauchi T, Kaburagi Y, Ueki K, Tsuji Y, Stark GR, Kerr IM, Tsushima T, Akanuma Y, Komuro I et al (1998) Growth hormone and prolactin stimulate tyrosine phosphorylation of insulin receptor substrate-1, -2, and -3, their association with p85 phosphatidylinositol 3-kinase (PI3-kinase), and concomitantly PI3-kinase activation via JAK2 kinase. J Biol Chem 273:15719–15726PubMedCrossRefGoogle Scholar

Copyright information

© The International CCN Society 2012

Authors and Affiliations

  • Aneesha Radhakrishnan
    • 1
    • 2
  • Rajesh Raju
    • 1
    • 3
  • Nirvana Tuladhar
    • 4
  • Tejaswini Subbannayya
    • 1
    • 5
  • Joji Kurian Thomas
    • 1
    • 5
  • Renu Goel
    • 1
    • 3
  • Deepthi Telikicherla
    • 1
    • 3
  • Shyam Mohan Palapetta
    • 1
    • 6
  • B. Abdul Rahiman
    • 3
  • Desai Dattatraya Venkatesh
    • 4
  • Kulkarni-Kale Urmila
    • 4
  • H. C. Harsha
    • 1
  • Premendu Prakash Mathur
    • 2
    • 6
  • T. S. Keshava Prasad
    • 1
    • 5
    • 6
    • 7
  • Akhilesh Pandey
    • 8
    • 9
    • 10
    • 11
  • Carrie Shemanko
    • 12
  • Aditi Chatterjee
    • 1
  1. 1.Institute of BioinformaticsInternational Tech ParkBangaloreIndia
  2. 2.Department of Biochemistry and Molecular BiologyPondicherry UniversityPuducherryIndia
  3. 3.Department of BiotechnologyKuvempu UniversityShankaraghattaIndia
  4. 4.Bioinformatics CentreUniversity of PunePuneIndia
  5. 5.School of BiotechnologyAmrita Vishwa VidyapeethamKollamIndia
  6. 6.Centre of Excellence in Bioinformatics, School of Life SciencesPondicherry UniversityPuducherryIndia
  7. 7.Manipal UniversityManipalIndia
  8. 8.McKusick-Nathans Institute of Genetic MedicineJohns Hopkins University School of MedicineBaltimoreUSA
  9. 9.Department of Biological ChemistryJohns Hopkins University School of MedicineBaltimoreUSA
  10. 10.Department of OncologyJohns Hopkins University School of MedicineBaltimoreUSA
  11. 11.Department of PathologyJohns Hopkins University School of MedicineBaltimoreUSA
  12. 12.Department of Biological SciencesUniversity of CalgaryCalgaryCanada

Personalised recommendations