Journal of Cell Communication and Signaling

, Volume 5, Issue 4, pp 271–275 | Cite as

Salivary proteins as predictors and controls for oral health

  • Dusa Vukosavljevic
  • William Custodio
  • Walter L. SiqueiraEmail author


We will provide a translational view of using the recent technological advances in dental research for predicting, monitoring, and preventing the development of oral diseases by investigating the diagnostic and therapeutic role of salivary proteins. New analytical state-of-the-art technologies such as mass spectrometry and atomic force microscopy have revolutionized the field of oral biology. These novel technologies open avenues for a comprehensive characterization of the salivary proteins followed by the evaluation of the physiological functions which could make possible in a near future the development of a new series of synthetic protein for therapeutic propose able to prevent global oral diseases such as periodontal disease and dental caries, the two most prevalent oral diseases in the World.


Saliva Proteins Proteomics Oral disease Mass spectrometry Atomic Force Microscopy 



Preparation of this article was supported by the CIHR (grant # 106657 and grant # 97577) and NSERC grant #371813. WLS is a recipient of a CIHR New Investigator Salary Award (grant # 113166). The authors have declared no conflict of interest

Conflicts of interest

The authors have declared no conflict of interest.


  1. Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE (2005) Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 43:5721–5732PubMedCrossRefGoogle Scholar
  2. Albandar JM (2002) Periodontal diseases in North America. Periodontology 2000(29):31–69CrossRefGoogle Scholar
  3. Albandar JM, Brunelle JA, Kingman A (1999) Destructive periodontal disease in adults 30 years of age and older in the United States, 1988–1994. J Periodontol 70:13–29PubMedCrossRefGoogle Scholar
  4. Amano A, Sojar HT, Lee JY, Sharma A, Levine MJ et al (1994) Salivary receptors for recombinant fimbrillin of Porphyromonas gingivalis. Infect Immun 62:3372–3380PubMedGoogle Scholar
  5. Barkai E, Jung YJ, Silbey R (2004) Theory of single-molecule spectroscopy: beyond the ensemble average. Annu Rev Phys Chem 55:457–507PubMedCrossRefGoogle Scholar
  6. Bhalla S, Tandon S, Satyamoorthy K (2010) Salivary proteins and early childhood caries: a gel electrophoretic analysis. Contemp Clin Dent 1:17–22PubMedCrossRefGoogle Scholar
  7. Blicharz TM, Siqueira WL, Helmerhorst EJ, Oppenheim FG, Wexler PJ et al (2009) Fiber-optic microsphere-based antibody array for the analysis of inflammatory cytokines in saliva. Anal Chem 81:2106–2114PubMedCrossRefGoogle Scholar
  8. Bowden GH (1999) Controlled environment model for accumulation of biofilms of oral bacteria. Methods Enzymol 310:216–224PubMedCrossRefGoogle Scholar
  9. Bradshaw DJ, Marsh PD, Schilling KM, Cummins D (1996) A modified chemostat system to study the ecology of oral biofilms. J Appl Bacteriol 80:124–130PubMedCrossRefGoogle Scholar
  10. Cannon RD, Nand AK, Jenkinson HF (1995) Adherence of Candida albicans to human salivary components adsorbed to hydroxylapatite. Microbiology 141:213–219PubMedCrossRefGoogle Scholar
  11. Christersson CE, Fornalik MS, Baier RE, Glantz P (1987) In vitro attachment of oral microorganisms to solid surfaces: evaluation of a controlled flow method. Scand J Dent Res 95:151–158PubMedGoogle Scholar
  12. Dawes C, Jenkins GN, Tonge CH (1963) The nomenclature of the integuments of the enamel surface of the teeth. Br Dent J 115:65–68Google Scholar
  13. Deshpande K, Jain A, Sharma R, Prashar S, Jain R (2010) Diabetes and periodontitis. J Indian Soc Periodontol 14:207–212PubMedCrossRefGoogle Scholar
  14. Edgar WM (1992) Saliva: its secretion, composition and functions. Brit Dent J, London 172(8):305–312CrossRefGoogle Scholar
  15. Featherstone JD (2000) The science and practice of caries prevention. J Am Dent Assoc 131:887–899PubMedGoogle Scholar
  16. Franzmann E, Reatgui E, Pernas F, Karakullukcu B, Carraway K et al (2007) Soluble CD44 is a potential marker for the early detection of head and neck cancer. Cancer Epidemiol Biomarkers Prev 16:1348–1355PubMedCrossRefGoogle Scholar
  17. Gibbons RJ, Hay DI (1988) Human salivary acidic proline-rich proteins and statherin promote the attachment of actinomyces viscosus LY7 to apatitic surfaces. Infect Immun 56:439–445PubMedGoogle Scholar
  18. Gibbons RJ, Hay DI, Schlesinger DH (1991) Delineation of a segment of adsorbed salivary acidic proline-rich proteins which promotes adhesion of Streptococcus gordonii to apatitic surfaces. Infect Immun 59:2948–2954PubMedGoogle Scholar
  19. Greenleaf WJ, Woodside MT, Block SM (2007) High-resolution, singlemolecule measurements of biomolecular motion. Annu Rev Biophys Biomol Struct 36:171–190PubMedCrossRefGoogle Scholar
  20. Grossi SG, Genco RJ (1998) Periodontal disease and diabetes mellitus: a two-way relationship. Ann Periodontol 3:20–29CrossRefGoogle Scholar
  21. Guggenheim M, Shapiro S, Gmür R, Guggenheim B (2001) Spatial arrangements and associative behavior of species in an in vitro oral biofilm model. Appl Environ Microbiol 67:1343–1350PubMedCrossRefGoogle Scholar
  22. Herles S, Olsen S, Afflitto J, Gaffar A (1994) Chemostat flow cell system: an in vitro model for the evaluation of antiplaque agents. J Dent Res 73:1748–1755PubMedGoogle Scholar
  23. Horber JK, Miles MJ (2003) Scanning probe evolution in biology. Science 302:1002–1005PubMedCrossRefGoogle Scholar
  24. Jenkinson HF, Lamont RJ (1997) Streptococcal adhesion and colonization. Crit Rev Oral Biol Med 8:175–200PubMedCrossRefGoogle Scholar
  25. Kinniment SL, Wimpenny JW, Adams D, Marsh PD (1996) Development of a steady-state oral microbial biofilm community using the constant-depth film fermenter. Microbiology 142:631–638PubMedCrossRefGoogle Scholar
  26. Kuboki Y, Teraoka K, Okada S (1987) X-ray photoelectron spectroscopic studies of the adsorption of salivary constituents on enamel. J Dent Res 66:1016–1019PubMedCrossRefGoogle Scholar
  27. Larsen T, Fiehn NE (1995) Development of a flow method for susceptibility testing of oral biofilms in vitro. APMIS 103:339–344PubMedCrossRefGoogle Scholar
  28. Leito JTD, Ligtenberg AJ, Nazmi K, Veerman EC (2009) Identification of salivary components that induce transition of hyphae to yeast in Candida albicans. FEMS. Yeast Res 9:1102–1110CrossRefGoogle Scholar
  29. Lodish H, Berk A, Matsudaira P, Kaiser CA, Krieger M et al (2004) Molecular cell biology, 5th edn. W. H. Freeman and Company, New York, p 1344Google Scholar
  30. Loo JA, Yan W, Ramachandran P, Wong DT (2010) Comparative human salivary and plasma proteomes. J Dent Res 89:1016–1023PubMedCrossRefGoogle Scholar
  31. Marsh PD (2003) Are dental diseases examples of ecological catastrophes? Microb 149:1990–1995Google Scholar
  32. Neville BW, Day TA (2002) Oral cancer and precancerous lesions. CA Cancer J Clin 52:195–215PubMedCrossRefGoogle Scholar
  33. Oppenheim FG, Yang YC, Diamond RD, Hyslop D, Offner GD et al (1986) The primary structure and functional characterization of the neutral histidine-rich polypeptide from human parotid secretion. I Biol Chem 261:1177–1182Google Scholar
  34. Ounkomol C, Xie H, Heinrich V (2009) Versatile horizontal force probe for mechanical tests on pipette-held cells, particles, and membrane capsules. Biophys J 96:1218–1231PubMedCrossRefGoogle Scholar
  35. Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA Cancer J Clin 55:74–108PubMedCrossRefGoogle Scholar
  36. Parkin DM, Laara E, Muir CS (1988) Estimates of the worldwide frequency of sixteen major cancers in 1980. Int J Cancer 41(2):184–197PubMedCrossRefGoogle Scholar
  37. Pollock WK, Armstrong RA, Brydon LJ, Jones RL, MacIntyre DE (1984) Thromboxane-induced phosphatidate formation in human platelets. Relationship to receptor occupancy and to changes in cytosolic free calcium. Biochem J 219:833–842PubMedGoogle Scholar
  38. Ramage G, Martinez JP, Lopez-Ribot JL (2006) Candida biofilms on implanted biomaterials; a clinically significant problem. FEMS Yeast research 6:979–986PubMedCrossRefGoogle Scholar
  39. Rolla G, Ciardi JE, Schultz SA (1983) Adsorption of glucosyltransferase to saliva-coated hydroxyapatite possible mechanism for sucrose-dependent bacterial colonization of teeth. Scand J Dent Res 91:112–117PubMedGoogle Scholar
  40. Salvi GE, Lawrence HP, Offenbacher S, Beck JD (1997) Influence of risk factors on the pathogenesis of periodontites. Periodontol 2000(14):173–201CrossRefGoogle Scholar
  41. Scannapieco FA, Solomon L, Wadenya RO (1994) Emergence in human dental plaque and host distribution of amylasebinding streptococci. J Dent Res 73:1627–1635PubMedGoogle Scholar
  42. Siqueira WL, Dawes C (2011) The salivary proteome: challenges and perspectives. Proteomics Clin Appl. (in press)Google Scholar
  43. Siqueira WL, Oppenheim FG (2009) Small molecular weight proteins/peptides present in the in vivo formed human acquired enamel pellicle. Arch Oral 54:437–444CrossRefGoogle Scholar
  44. Siqueira WL, Helmerhorst EJ, Zhang W, Salih E, Oppenheim FG (2007a) Acquired enamel pellicle and its potential role in oral diagnostics. Ann NY Acad Sci 1098:504–509PubMedCrossRefGoogle Scholar
  45. Siqueira WL, Zhang W, Helmerhorst EJ, Gygi SP, Oppenheim FG (2007b) Identification of protein components in in vivo human acquired enamel pellicle using LC-ESI-MS/MS. J Proteome Res 6:2152–2160PubMedCrossRefGoogle Scholar
  46. Skjorland KK, Rykke M, Sonju T (1995) Rate of pellicle formation in vivo. Acta Odontol Scand 53:358–362PubMedCrossRefGoogle Scholar
  47. Socransky SS, Hafferjee AD, Cugini MA, Smith C, Kent RL (1998) Microbial complexes in subgingival plaque. J Clin Peridontol 25:134–144CrossRefGoogle Scholar
  48. Spielmann N, Wong D (2011) Saliva: diagnostics and therapeutic perspectives. Oral Diseases 17:345–354PubMedCrossRefGoogle Scholar
  49. Tsang CS, Ng H, McMillan AS (2007) Antifungal susceptibility of Candida albicans biofilms on titanium discs with different surface roughness. Clin Oral Investig 11:361–368PubMedCrossRefGoogle Scholar
  50. Whittaker CJ, Klier CM, Kolenbrander PE (1996) Mechanisms of adhesion by oral bacteria. Annu Rev Microbiol 50:513–552PubMedCrossRefGoogle Scholar
  51. Xu T, Levitz SM, Diamond RD, Oppenheim FG (1991) Anticandidal activity of major human salivary histatins. Infect Immun 59:2549–2554PubMedGoogle Scholar
  52. Zhang X, Rico F, Xu AJ, Moy VT (2009) Atomic force microscopy of protein-protein interactions. Handbook of single-molecule biophysics doi: 10.1007/978-0-387-76497-9_19: 555–570

Copyright information

© The International CCN Society 2011

Authors and Affiliations

  • Dusa Vukosavljevic
    • 1
  • William Custodio
    • 2
  • Walter L. Siqueira
    • 3
    Email author
  1. 1.Biomedical Engineering Graduate ProgramThe University of Western OntarioLondonCanada
  2. 2.Department of Prosthodontics and PeriodontologyPiracicaba Dental School, State University of CampinasPiracicabaBrazil
  3. 3.Schulich School of Medicine & DentistryThe University of Western OntarioLondonCanada

Personalised recommendations