Advertisement

Enzymes used in molecular biology: a useful guide

  • Laure Rittié
  • Bernard Perbal
Research Article

Abstract

Since molecular cloning has become routine laboratory technique, manufacturers offer countless sources of enzymes to generate and manipulate nucleic acids. Thus, selecting the appropriate enzyme for a specific task may seem difficult to the novice. This review aims at providing the readers with some cues for understanding the function and specificities of the different sources of polymerases, ligases, nucleases, phosphatases, methylases, and topoisomerases used for molecular cloning. We provide a description of the most commonly used enzymes of each group, and explain their properties and mechanism of action. By pointing out key requirements for each enzymatic activity and clarifying their limitations, we aim at guiding the reader in selecting appropriate enzymatic source and optimal experimental conditions for molecular cloning experiments.

Keywords

Enzymes Molecular biology Molecular cloning 

References

  1. Agrawal V, Kishan KV (2003) OB-fold: growing bigger with functional consistency. Curr Protein Pept Sci 4:195–206 doi: 10.2174/1389203033487207 PubMedCrossRefGoogle Scholar
  2. Ando T (1966) A nuclease specific for heat-denatured DNA in isolated from a product of Aspergillus oryzae. Biochim Biophys Acta 114:158–168PubMedGoogle Scholar
  3. Anfinsen CB, White FHJ (1961) The ribonucleases, occurrence, structure and properties. In: Boyer PD, Lardy H, Myrback K (eds) The enzymes. 2nd edn. Academic, New-York, pp 95–122Google Scholar
  4. Aravin A, Tuschl T (2005) Identification and characterization of small RNAs involved in RNA silencing. FEBS Lett 579:5830–5840 doi: 10.1016/j.febslet.2005.08.009 PubMedCrossRefGoogle Scholar
  5. Arcus V (2002) OB-fold domains: a snapshot of the evolution of sequence, structure and function. Curr Opin Struct Biol 12:794–801 doi: 10.1016/S0959-440X(02)00392-5 PubMedCrossRefGoogle Scholar
  6. Arezi B, Hogrefe HH (2007) Escherichia coli DNA polymerase III epsilon subunit increases Moloney murine leukemia virus reverse transcriptase fidelity and accuracy of RT-PCR procedures. Anal Biochem 360:84–91 doi: 10.1016/j.ab.2006.10.009 PubMedCrossRefGoogle Scholar
  7. Baldwin EL, Osheroff N (2005) Etoposide, topoisomerase II and cancer. Curr Med Chem Anticancer Agents 5:363–372 doi: 10.2174/1568011054222364 PubMedCrossRefGoogle Scholar
  8. Baltimore D (1970) RNA-dependent DNA polymerase in virions of RNA tumour viruses. Nature 226:1209–1211 doi: 10.1038/2261209a0 PubMedCrossRefGoogle Scholar
  9. Baluda MA, Perbal B, Rushlow KE, Papas TS (1983) Avian myeloblastosis virus: a model for the generation of viral oncogenes from potentially oncogenic cellular genetic elements. Folia Biol (Praha) 29:18–34Google Scholar
  10. Beard P, Morrow JF, Berg P (1973) Cleavage of circular, superhelical simian virus 40 DNA to a linear duplex by S1 nuclease. J Virol 12:1303–1313PubMedGoogle Scholar
  11. Been MD, Champoux JJ (1981) DNA breakage and closure by rat liver type 1 topoisomerase: separation of the half-reactions by using a single-stranded DNA substrate. Proc Natl Acad Sci USA 78:2883–2887 doi: 10.1073/pnas.78.5.2883 PubMedCrossRefGoogle Scholar
  12. Berger SL, Wallace DM, Puskas RS, Eschenfeldt WH (1983) Reverse transcriptase and its associated ribonuclease H: interplay of two enzyme activities controls the yield of single-stranded complementary deoxyribonucleic acid. Biochemistry 22:2365–2372 doi: 10.1021/bi00279a010 PubMedCrossRefGoogle Scholar
  13. Berkner KL, Folk WR (1980) Polynucleotide kinase exchange as an assay for class II restriction endonucleases. Methods Enzymol 65:28–36 doi: 10.1016/S0076-6879(80)65007-1 PubMedCrossRefGoogle Scholar
  14. Berkower I, Leis J, Hurwitz J (1973) Isolation and characterization of an endonuclease from Escherichia coli specific for ribonucleic acid in ribonucleic acid-deoxyribonucleic acid hybrid structures. J Biol Chem 248:5914–5921PubMedGoogle Scholar
  15. Brannigan JA, Ashford SR, Doherty AJ, Timson DJ, Wigley DB (1999) Nucleotide sequence, heterologous expression and novel purification of DNA ligase from Bacillus stearothermophilus(1). Biochim Biophys Acta 1432:413–418PubMedGoogle Scholar
  16. Brock TD, Freeze H (1969) Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile. J Bacteriol 98:289–297 doi: 10.1002/path.1710980409 PubMedCrossRefGoogle Scholar
  17. Brown PO, Peebles CL, Cozzarelli NR (1979) A topoisomerase from Escherichia coli related to DNA gyrase. Proc Natl Acad Sci USA 76:6110–6114 doi: 10.1073/pnas.76.12.6110 PubMedCrossRefGoogle Scholar
  18. Butler ET, Chamberlin MJ (1982) Bacteriophage SP6-specific RNA polymerase. I. Isolation and characterization of the enzyme. J Biol Chem 257:5772–5778PubMedGoogle Scholar
  19. Cameron V, Uhlenbeck OC (1977) 3′-Phosphatase activity in T4 polynucleotide kinase. Biochemistry 16:5120–5126 doi: 10.1021/bi00642a027 PubMedCrossRefGoogle Scholar
  20. Cameron V, Soltis D, Uhlenbeck OC (1978) Polynucleotide kinase from a T4 mutant which lacks the 3′ phosphatase activity. Nucleic Acids Res 5:825–833 doi: 10.1093/nar/5.3.825 PubMedCrossRefGoogle Scholar
  21. Campbell VW, Jackson DA (1980) The effect of divalent cations on the mode of action of DNase I. The initial reaction products produced from covalently closed circular DNA. J Biol Chem 255:3726–3735PubMedGoogle Scholar
  22. Chaconas G, van de Sande JH (1980) 5′-32P labeling of RNA and DNA restriction fragments. Methods Enzymol 65:75–85 doi: 10.1016/S0076-6879(80)65012-5 PubMedCrossRefGoogle Scholar
  23. Chamberlin M, McGrath J, Waskell L (1970) New RNA polymerase from Escherichia coli infected with bacteriophage T7. Nature 228:227–231 doi: 10.1038/228227a0 PubMedCrossRefGoogle Scholar
  24. Champoux JJ (1978) Proteins that affect DNA conformation. Annu Rev Biochem 47:449–479 doi: 10.1146/annurev.bi.47.070178.002313 PubMedCrossRefGoogle Scholar
  25. Champoux JJ (2001) DNA topoisomerases: structure, function, and mechanism. Annu Rev Biochem 70:369–413 doi: 10.1146/annurev.biochem.70.1.369 PubMedCrossRefGoogle Scholar
  26. Chase JW, Richardson CC (1974a) Exonuclease VII of Escherichia coli. Mechanism of action. J Biol Chem 249:4553–4561PubMedGoogle Scholar
  27. Chase JW, Richardson CC (1974b) Exonuclease VII of Escherichia coli. Purification and properties. J Biol Chem 249:4545–4552PubMedGoogle Scholar
  28. Chien A, Edgar DB, Trela JM (1976) Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. J Bacteriol 127:1550–1557PubMedGoogle Scholar
  29. Crick FH (1958) On protein synthesis. Symp Soc Exp Biol 12:138–163PubMedGoogle Scholar
  30. Demple B, Harrison L (1994) Repair of oxidative damage to DNA: enzymology and biology. Annu Rev Biochem 63:915–948 doi: 10.1146/annurev.bi.63.070194.004411 PubMedCrossRefGoogle Scholar
  31. Depew RE, Snopek TJ, Cozzarelli NR (1975) Characterization of a new class of deletions of the D region of the bacteriophage T4 genome. Virology 64:144–145 doi: 10.1016/0042-6822(75)90086-0 PubMedCrossRefGoogle Scholar
  32. Doherty AJ, Wigley DB (1999) Functional domains of an ATP-dependent DNA ligase. J Mol Biol 285:63–71 doi: 10.1006/jmbi.1998.2301 PubMedCrossRefGoogle Scholar
  33. Donis-Keller H (1980) Phy M: an RNase activity specific for U and A residues useful in RNA sequence analysis. Nucleic Acids Res 8:3133–3142 doi: 10.1093/nar/8.14.3133 PubMedCrossRefGoogle Scholar
  34. Durantel D, Croizier L, Ayres MD, Croizier G, Possee RD, Lopez-Ferber M (1998) The pnk/pnl gene (ORF 86) of Autographa californica nucleopolyhedrovirus is a non-essential, immediate early gene. J Gen Virol 79(Pt 3):629–637PubMedGoogle Scholar
  35. Ehrlich M, Wang RY (1981) 5-Methylcytosine in eukaryotic DNA. Science 212:1350–1357 doi: 10.1126/science.6262918 PubMedCrossRefGoogle Scholar
  36. Englund PT (1971) Analysis of nucleotide sequences at 3′ termini of duplex deoxyribonucleic acid with the use of the T4 deoxyribonucleic acid polymerase. J Biol Chem 246:3269–3276PubMedGoogle Scholar
  37. Finnegan DJ (1989) Eukaryotic transposable elements and genome evolution. Trends Genet 5:103–107 doi: 10.1016/0168-9525(89)90039-5 PubMedCrossRefGoogle Scholar
  38. Frouin I, Montecucco A, Spadari S, Maga G (2003) DNA replication: a complex matter. EMBO Rep 4:666–670 doi: 10.1038/sj.embor.embor886 PubMedCrossRefGoogle Scholar
  39. Galas DJ, Schmitz A (1978) DNAse footprinting: a simple method for the detection of protein-DNA binding specificity. Nucleic Acids Res 5:3157–3170 doi: 10.1093/nar/5.9.3157 PubMedCrossRefGoogle Scholar
  40. Garg P, Burgers PM (2005) DNA polymerases that propagate the eukaryotic DNA replication fork. Crit Rev Biochem Mol Biol 40:115–128 doi: 10.1080/10409230590935433 PubMedCrossRefGoogle Scholar
  41. Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119:493–501 doi: 10.1083/jcb.119.3.493 PubMedCrossRefGoogle Scholar
  42. Geier GE, Modrich P (1979) Recognition sequence of the dam methylase of Escherichia coli K12 and mode of cleavage of Dpn I endonuclease. J Biol Chem 254:1408–1413PubMedGoogle Scholar
  43. Gellert M (1981) DNA topoisomerases. Annu Rev Biochem 50:879–910 doi: 10.1146/annurev.bi.50.070181.004311 PubMedCrossRefGoogle Scholar
  44. Germond JE, Vogt VM, Hirt B (1974) Characterization of the single-strand-specific nuclease S1 activity on double-stranded supercoiled polyoma DNA. Eur J Biochem 43:591–600 doi: 10.1111/j.1432-1033.1974.tb03446.x PubMedCrossRefGoogle Scholar
  45. Ghangas GS, Wu R (1975) Specific hydrolysis of the cohesive ends of bacteriophage lambda DNA by three single strand-specific nucleases. J Biol Chem 250:4601–4606PubMedGoogle Scholar
  46. Godson GN (1973) Action of the single-stranded DNA specific nuclease S1 on double-stranded DNA. Biochim Biophys Acta 308:59–67PubMedGoogle Scholar
  47. Green C, Tibbetts C (1980) Targeted deletions of sequences from closed circular DNA. Proc Natl Acad Sci USA 77:2455–2459 doi: 10.1073/pnas.77.5.2455 PubMedCrossRefGoogle Scholar
  48. Green MR, Maniatis T, Melton DA (1983) Human beta-globin pre-mRNA synthesized in vitro is accurately spliced in Xenopus oocyte nuclei. Cell 32:681–694 doi: 10.1016/0092-8674(83)90054-5 PubMedCrossRefGoogle Scholar
  49. Gross HJ, Domdey H, Lossow C, Jank P, Raba M, Alberty H et al (1978) Nucleotide sequence and secondary structure of potato spindle tuber viroid. Nature 273:203–208 doi: 10.1038/273203a0 PubMedCrossRefGoogle Scholar
  50. Gruenbaum Y, Cedar H, Razin A (1981a) Restriction enzyme digestion of hemimethylated DNA. Nucleic Acids Res 9:2509–2515 doi: 10.1093/nar/9.11.2509 PubMedCrossRefGoogle Scholar
  51. Gruenbaum Y, Stein R, Cedar H, Razin A (1981b) Methylation of CpG sequences in eukaryotic DNA. FEBS Lett 124:67–71 doi: 10.1016/0014-5793(81)80055-5 PubMedCrossRefGoogle Scholar
  52. Gueguen Y, Rolland JL, Lecompte O, Azam P, Le Romancer G, Flament D et al (2001) Characterization of two DNA polymerases from the hyperthermophilic euryarchaeon Pyrococcus abyssi. Eur J Biochem 268:5961–5969 doi: 10.1046/j.0014-2956.2001.02550.x PubMedCrossRefGoogle Scholar
  53. Halligan BD, Davis JL, Edwards KA, Liu LF (1982) Intra- and intermolecular strand transfer by HeLa DNA topoisomerase I. J Biol Chem 257:3995–4000PubMedGoogle Scholar
  54. Harrison B, Zimmerman SB (1986) T4 polynucleotide kinase: macromolecular crowding increases the efficiency of reaction at DNA termini. Anal Biochem 158:307–315 doi: 10.1016/0003-2697(86)90555-5 PubMedCrossRefGoogle Scholar
  55. Heflich RH, Mahoney-Leo E, Maher VM, McCormick JJ (1979) Removal of thymine-containing pyrimidine dimers from UV light-irradiated DNA by S1 endonuclease. Photochem Photobiol 30:247–250 doi: 10.1111/j.1751-1097.1979.tb07142.x PubMedCrossRefGoogle Scholar
  56. Ho CK, Shuman S (2002) Bacteriophage T4 RNA ligase 2 (gp24.1) exemplifies a family of RNA ligases found in all phylogenetic domains. Proc Natl Acad Sci USA 99:12709–12714 doi: 10.1073/pnas.192184699 PubMedCrossRefGoogle Scholar
  57. Hofstetter H, Schambock A, Van Den Berg J, Weissmann C (1976) Specific excision of the inserted DNA segment from hybrid plasmids constructed by the poly(dA). poly (dT) method. Biochim Biophys Acta 454:587–591PubMedGoogle Scholar
  58. Houts GE, Miyagi M, Ellis C, Beard D, Beard JW (1979) Reverse transcriptase from avian myeloblastosis virus. J Virol 29:517–522PubMedGoogle Scholar
  59. Huang Z, Fasco MJ, Kaminsky LS (1996) Optimization of Dnase I removal of contaminating DNA from RNA for use in quantitative RNA-PCR. Biotechniques 20:1012–1014 1016, 1018–1020PubMedGoogle Scholar
  60. Huber HE, Tabor S, Richardson CC (1987) Escherichia coli thioredoxin stabilizes complexes of bacteriophage T7 DNA polymerase and primed templates. J Biol Chem 262:16224–16232PubMedGoogle Scholar
  61. Johnson PH, Laskowski M Sr (1968) Sugar-unspecific mung bean nuclease I. J Biol Chem 243:3421–3424PubMedGoogle Scholar
  62. Johnson PH, Laskowski M Sr (1970) Mung bean nuclease I. II. Resistance of double stranded deoxyribonucleic acid and susceptibility of regions rich in adenosine and thymidine to enzymatic hydrolysis. J Biol Chem 245:891–898PubMedGoogle Scholar
  63. Jonsson ZO, Thorbjarnardottir SH, Eggertsson G, Palsdottir A (1994) Sequence of the DNA ligase-encoding gene from Thermus scotoductus and conserved motifs in DNA ligases. Gene 151:177–180 doi: 10.1016/0378-1119(94)90652-1 PubMedCrossRefGoogle Scholar
  64. Junowicz E, Spencer JH (1973) Studies on bovine pancreatic deoxyribonuclease A. II. The effect of different bivalent metals on the specificity of degradation of DNA. Biochim Biophys Acta 312:85–102PubMedGoogle Scholar
  65. Kaluz S, Kaluzova M, Flint AP (1995) Enzymatically produced composite primers: an application of T4 RNA ligase-coupled primers to PCR. Biotechniques 19:182–184 186PubMedGoogle Scholar
  66. Keller W, Crouch R (1972) Degradation of DNA RNA hybrids by ribonuclease H and DNA polymerases of cellular and viral origin. Proc Natl Acad Sci USA 69:3360–3364 doi: 10.1073/pnas.69.11.3360 PubMedCrossRefGoogle Scholar
  67. Khorana HG, Agarwal KL, Buchi H, Caruthers MH, Gupta NK, Kleppe K, Kumar A, Otsuka E, RajBhandary UL, Van de Sande JH, Sgaramella V, Terao T, Weber H, Yamada T (1972) Studies on polynucleotides. 103. Total synthesis of the structural gene for an alanine transfer ribonucleic acid from yeast. J Mol Biol 72:209–217 doi: 10.1016/0022-2836(72)90146-5 PubMedCrossRefGoogle Scholar
  68. Kilpatrick MW, Wei CF, Gray HB Jr, Wells RD (1983) BAL 31 nuclease as a probe in concentrated salt for the B-Z DNA junction. Nucleic Acids Res 11:3811–3822 doi: 10.1093/nar/11.11.3811 PubMedCrossRefGoogle Scholar
  69. Kinoshita Y, Nishigaki K, Husimi Y (1997) Fluorescence-, isotope- or biotin-labeling of the 5′-end of single-stranded DNA/RNA using T4 RNA ligase. Nucleic Acids Res 25:3747–3748 doi: 10.1093/nar/25.18.3747 PubMedCrossRefGoogle Scholar
  70. Klenow H, Henningsen I (1970) Selective elimination of the exonuclease activity of the deoxyribonucleic acid polymerase from Escherichia coli B by limited proteolysis. Proc Natl Acad Sci USA 65:168–175 doi: 10.1073/pnas.65.1.168 PubMedCrossRefGoogle Scholar
  71. Klevan L, Wang JC (1980) Deoxyribonucleic acid gyrase-deoxyribonucleic acid complex containing 140 base pairs of deoxyribonucleic acid and an alpha 2 beta 2 protein core. Biochemistry 19:5229–5234 doi: 10.1021/bi00564a012 PubMedCrossRefGoogle Scholar
  72. Kornberg T, Gefter ML (1970) DNA synthesis in cell-free extracts of a DNA polymerase-defective mutant. Biochem Biophys Res Commun 40:1348–1355PubMedCrossRefGoogle Scholar
  73. Krakow JS, Coutsogeorgopoulos C, Canellakis ES (1962) Studies on the incorporation of deoxyribonucleic acid. Biochim Biophys Acta 55:639–650 doi: 10.1016/0006-3002(62)90842-9 PubMedCrossRefGoogle Scholar
  74. Krieg PA, Melton DA (1984) Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cDNAs. Nucleic Acids Res 12:7057–7070 doi: 10.1093/nar/12.18.7057 PubMedCrossRefGoogle Scholar
  75. Kroeker WD, Kowalski D (1978) Gene-sized pieces produced by digestion of linear duplex DNA with mung bean nuclease. Biochemistry 17:3236–3243 doi: 10.1021/bi00609a010 PubMedCrossRefGoogle Scholar
  76. Kroeker WD, Kowalski D, Laskowski M Sr (1976) Mung bean nuclease I. Terminally directed hydrolysis of native DNA. Biochemistry 15:4463–4467 doi: 10.1021/bi00665a020 PubMedCrossRefGoogle Scholar
  77. Kunitz M (1950) Crystalline desoxyribonuclease; isolation and general properties; spectrophotometric method for the measurement of desoxyribonuclease activity. J Gen Physiol 33:349–362 doi: 10.1085/jgp.33.4.349 PubMedCrossRefGoogle Scholar
  78. Laskey RA, Mills AD, Morris NR (1977) Assembly of SV40 chromatin in a cell-free system from Xenopus eggs. Cell 10:237–243 doi: 10.1016/0092-8674(77)90217-3 PubMedCrossRefGoogle Scholar
  79. Lehman IR (1974) DNA ligase: structure, mechanism, and function. Science 186:790–797 doi: 10.1126/science.186.4166.790 PubMedCrossRefGoogle Scholar
  80. Leis J, Duyk G, Johnson S, Longiaru M, Skalka A (1983) Mechanism of action of the endonuclease associated with the alpha beta and beta beta forms of avian RNA tumor virus reverse transcriptase. J Virol 45:727–739PubMedGoogle Scholar
  81. Li HH, Cui XF, Arnheim N (1991) Eliminating primers from completed polymerase chain reactions with exonuclease VII. Nucleic Acids Res 19:3139–3141 doi: 10.1093/nar/19.11.3139 PubMedCrossRefGoogle Scholar
  82. Lillehaug JR (1977) Physicochemical properties of T4 polynucleotide kinase. Eur J Biochem 73:499–506 doi: 10.1111/j.1432-1033.1977.tb11343.x PubMedCrossRefGoogle Scholar
  83. Lillehaug JR, Kleppe RK, Kleppe K (1976) Phosphorylation of double-stranded DNAs by T4 polynucleotide kinase. Biochemistry 15:1858–1865 doi: 10.1021/bi00654a011 PubMedCrossRefGoogle Scholar
  84. Lilley DM (1980) The inverted repeat as a recognizable structural feature in supercoiled DNA molecules. Proc Natl Acad Sci USA 77:6468–6472 doi: 10.1073/pnas.77.11.6468 PubMedCrossRefGoogle Scholar
  85. Liu X, Gorovsky MA (1993) Mapping the 5′ and 3′ ends of Tetrahymena thermophila mRNAs using RNA ligase mediated amplification of cDNA ends (RLM-RACE). Nucleic Acids Res 21:4954–4960 doi: 10.1093/nar/21.21.4954 PubMedCrossRefGoogle Scholar
  86. Liu LF, Miller KG (1981) Eukaryotic DNA topoisomerases: two forms of type I DNA topoisomerases from HeLa cell nuclei. Proc Natl Acad Sci USA 78:3487–3491 doi: 10.1073/pnas.78.6.3487 PubMedCrossRefGoogle Scholar
  87. Lockard RE, Alzner-Deweerd B, Heckman JE, MacGee J, Tabor MW, RajBhandary UL (1978) Sequence analysis of 5′[32P] labeled mRNA and tRNA using polyacrylamide gel electrophoresis. Nucleic Acids Res 5:37–56 doi: 10.1093/nar/5.1.37 PubMedCrossRefGoogle Scholar
  88. Marinus MG, Morris NR (1973) Isolation of deoxyribonucleic acid methylase mutants of Escherichia coli K-12. J Bacteriol 114:1143–1150PubMedGoogle Scholar
  89. Mark DF, Richardson CC (1976) Escherichia coli thioredoxin: a subunit of bacteriophage T7 DNA polymerase. Proc Natl Acad Sci USA 73:780–784 doi: 10.1073/pnas.73.3.780 PubMedCrossRefGoogle Scholar
  90. Martin IV, MacNeill SA (2002) ATP-dependent DNA ligases. Genome Biol 3(4):Reviews3005PubMedCrossRefGoogle Scholar
  91. Martin SR, McCoubrey WK Jr, McConaughy BL, Young LS, Been MD, Brewer BJ et al (1983) Multiple forms of rat liver type I topoisomerase. Methods Enzymol 100:137–144 doi: 10.1016/0076-6879(83)00050-6 PubMedCrossRefGoogle Scholar
  92. Martins A, Shuman S (2004a) Characterization of a baculovirus enzyme with RNA ligase, polynucleotide 5′-kinase, and polynucleotide 3′-phosphatase activities. J Biol Chem 279:18220–18231 doi: 10.1074/jbc.M313386200 PubMedCrossRefGoogle Scholar
  93. Martins A, Shuman S (2004b) An RNA ligase from Deinococcus radiodurans. J Biol Chem 279:50654–50661 doi: 10.1074/jbc.M407657200 PubMedCrossRefGoogle Scholar
  94. Maruyama K, Sugano S (1994) Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. Gene 138:171–174 doi: 10.1016/0378-1119(94)90802-8 PubMedCrossRefGoogle Scholar
  95. May MS, Hattman S (1975) Analysis of bacteriophage deoxyribonucleic acid sequences methylated by host- and R-factor-controlled enzymes. J Bacteriol 123:768–770PubMedGoogle Scholar
  96. Mechali M, de Recondo AM, Girard M (1973) Action of the S1 endonuclease from Aspergillus oryzae on simian virus 40 supercoiled component I DNA. Biochem Biophys Res Commun 54:1306–1320 doi: 10.1016/0006-291X(73)91130-3 PubMedCrossRefGoogle Scholar
  97. Melton DA, Krieg PA, Rebagliati MR, Maniatis T, Zinn K, Green MR (1984) Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res 12:7035–7056 doi: 10.1093/nar/12.18.7035 PubMedCrossRefGoogle Scholar
  98. Meyer RR, Glassberg J, Scott JV, Kornberg A (1980) A temperature-sensitive single-stranded DNA-binding protein from Escherichia coli. J Biol Chem 255:2897–2901PubMedGoogle Scholar
  99. Mikulski AJ, Laskowski M Sr (1970) Mung bean nuclease I. 3. Purification procedure and (3′) omega monophosphatase activity. J Biol Chem 245:5026–5031PubMedGoogle Scholar
  100. Modrich P, Richardson CC (1975) Bacteriophage T7 deoxyribonucleic acid replication invitro. Bacteriophage T7 DNA polymerase: an an emzyme composed of phage- and host-specific subunits. J Biol Chem 250:5515–5522PubMedGoogle Scholar
  101. Moelling K (1974) Characterization of reverse transcriptase and RNase H from friend-murine leukemia virus. Virology 62:46–59 doi: 10.1016/0042-6822(74)90302-X PubMedCrossRefGoogle Scholar
  102. Mol CD, Kuo CF, Thayer MM, Cunningham RP, Tainer JA (1995) Structure and function of the multifunctional DNA-repair enzyme exonuclease III. Nature 374:381–386 doi: 10.1038/374381a0 PubMedCrossRefGoogle Scholar
  103. Nakatani M, Ezaki S, Atomi H, Imanaka T (2000) A DNA ligase from a hyperthermophilic archaeon with unique cofactor specificity. J Bacteriol 182:6424–6433 doi: 10.1128/JB.182.22.6424-6433.2000 PubMedCrossRefGoogle Scholar
  104. Nandakumar J, Shuman S (2004) How an RNA ligase discriminates RNA versus DNA damage. Mol Cell 16:211–221 doi: 10.1016/j.molcel.2004.09.022 PubMedCrossRefGoogle Scholar
  105. Nandakumar J, Ho CK, Lima CD, Shuman S (2004) RNA substrate specificity and structure-guided mutational analysis of bacteriophage T4 RNA ligase 2. J Biol Chem 279:31337–31347 doi: 10.1074/jbc.M402394200 PubMedCrossRefGoogle Scholar
  106. Nelson M, Christ C, Schildkraut I (1984) Alteration of apparent restriction endonuclease recognition specificities by DNA methylases. Nucleic Acids Res 12:5165–5173 doi: 10.1093/nar/12.13.5165 PubMedCrossRefGoogle Scholar
  107. Panayotatos N, Wells RD (1981) Cruciform structures in supercoiled DNA. Nature 289:466–470 doi: 10.1038/289466a0 PubMedCrossRefGoogle Scholar
  108. Panet A, van de Sande JH, Loewen PC, Khorana HG, Raae AJ, Lillehaug JR et al (1973) Physical characterization and simultaneous purification of bacteriophage T4 induced polynucleotide kinase, polynucleotide ligase, and deoxyribonucleic acid polymerase. Biochemistry 12:5045–5050 doi: 10.1021/bi00749a003 PubMedCrossRefGoogle Scholar
  109. Peck LJ, Wang JC (1981) Sequence dependence of the helical repeat of DNA in solution. Nature 292:375–378 doi: 10.1038/292375a0 PubMedCrossRefGoogle Scholar
  110. Perbal B (2008) Avian Myeoloblastosis Virus (AMV): only one side of the coin. Retrovirology 5:49 doi: 10.1186/1742-4690-5-49 PubMedCrossRefGoogle Scholar
  111. Pfeffer S, Sewer A, Lagos-Quintana M, Sheridan R, Sander C, Grasser FA et al (2005) Identification of microRNAs of the herpesvirus family. Nat Methods 2:269–276 doi: 10.1038/nmeth746 PubMedCrossRefGoogle Scholar
  112. Pirrotta V (1976) Two restriction endonucleases from Bacillus globiggi. Nucleic Acids Res 3:1747–1760PubMedGoogle Scholar
  113. Prell B, Vosberg HP (1980) Analysis of covalent complexes formed between calf thymus DNA topoisomerase and single-stranded DNA. Eur J Biochem 108:389–398 doi: 10.1111/j.1432-1033.1980.tb04734.x PubMedCrossRefGoogle Scholar
  114. Raynaud CM, Sabatier L, Philipot O, Olaussen KA, Soria JC (2008) Telomere length, telomeric proteins and genomic instability during the multistep carcinogenic process. Crit Rev Oncol Hematol 66:99–117 doi: 10.1016/j.critrevonc.2007.11.006 PubMedCrossRefGoogle Scholar
  115. Razin A, Cedar H (1977) Distribution of 5-methylcytosine in chromatin. Proc Natl Acad Sci USA 74:2725–2728 doi: 10.1073/pnas.74.7.2725 PubMedCrossRefGoogle Scholar
  116. Razin A, Riggs AD (1980) DNA methylation and gene function. Science 210:604–610 doi: 10.1126/science.6254144 PubMedCrossRefGoogle Scholar
  117. Reddy R, Henning D, Epstein P, Busch H (1981) Primary and secondary structure of U2 snRNA. Nucleic Acids Res 9:5645–5658 doi: 10.1093/nar/9.21.5645 PubMedCrossRefGoogle Scholar
  118. Reid TW, Wilson IB (1971) Conformational isomers of alkaline phosphatase in the mechanism of hydrolysis. Biochemistry 10:380–387 doi: 10.1021/bi00793a016 PubMedCrossRefGoogle Scholar
  119. Retzel EF, Collett MS, Faras AJ (1980) Enzymatic synthesis of deoxyribonucleic acid by the avian retrovirus reverse transcriptase in vitro: optimum conditions required for transcription of large ribonucleic acid templates. Biochemistry 19:513–518 doi: 10.1021/bi00544a019 PubMedCrossRefGoogle Scholar
  120. Richardson CC, Kornberg A (1964) A deoxyribonucleic acid phosphatase-exonuclease from Escherichia Coli. I. Purification of the enzyme and characterization of the phosphatase activity. J Biol Chem 239:242–250PubMedGoogle Scholar
  121. Richardson CC, Lehman IR, Kornberg A (1964) A deoxyribonucleic acid phosphatase-exonuclease from Escherichia Coli. Ii. Characterization of the exonuclease activity. J Biol Chem 239:251–258PubMedGoogle Scholar
  122. Roberts NA, Craig JC, Sheldon J (1998) Resistance and cross-resistance with saquinavir and other HIV protease inhibitors: theory and practice. AIDS 12:453–460 doi: 10.1097/00002030-199805000-00005 PubMedCrossRefGoogle Scholar
  123. Rogers SG, Weiss B (1980) Cloning of the exonuclease III gene of Escherichia coli. Gene 11:187–195 doi: 10.1016/0378-1119(80)90059-1 PubMedCrossRefGoogle Scholar
  124. Rolland JL, Gueguen Y, Persillon C, Masson JM, Dietrich J (2004) Characterization of a thermophilic DNA ligase from the archaeon Thermococcus fumicolans. FEMS Microbiol Lett 236:267–273 doi: 10.1111/j.1574-6968.2004.tb09657.x PubMedCrossRefGoogle Scholar
  125. Roychoudhury R, Jay E, Wu R (1976) Terminal labeling and addition of homopolymer tracts to duplex DNA fragments by terminal deoxynucleotidyl transferase. Nucleic Acids Res 3:863–877PubMedGoogle Scholar
  126. Ruttimann C, Cotoras M, Zaldivar J, Vicuna R (1985) DNA polymerases from the extremely thermophilic bacterium Thermus thermophilus HB-8. Eur J Biochem 149:41–46 doi: 10.1111/j.1432-1033.1985.tb08890.x PubMedCrossRefGoogle Scholar
  127. Schenborn ET, Mierendorf RC Jr (1985) A novel transcription property of SP6 and T7 RNA polymerases: dependence on template structure. Nucleic Acids Res 13:6223–6236 doi: 10.1093/nar/13.17.6223 PubMedCrossRefGoogle Scholar
  128. Seeger C, Mason WS (2000) Hepatitis B virus biology. Microbiol Mol Biol Rev 64:51–68 doi: 10.1128/MMBR.64.1.51-68.2000 PubMedCrossRefGoogle Scholar
  129. Shenk TE, Rhodes C, Rigby PW, Berg P (1975) Mapping of mutational alterations in DNA with S1 nuclease: the location of deletions, insertions and temperature-sensitive mutations in SV40. Cold Spring Harb Symp Quant Biol 39(Pt 1):61–67PubMedGoogle Scholar
  130. Shishido K (1979) Location of S1 nuclease-cleavage sites on circular, superhelical DNAs between polyoma virus and simian virus 40. Agric Biol Chem 43:1093–1102Google Scholar
  131. Shishido K, Ando T (1974) Cleavage of ultraviolet light-irradiated DNA by single strand-specific S1 endonuclease. Biochem Biophys Res Commun 59:1380–1388 doi: 10.1016/0006-291X(74)90466-5 PubMedCrossRefGoogle Scholar
  132. Shishido K, Ando T (1975) Site-specific fragmentation of bacteriophage T5 DNA by single-strand-specific S1 endonuclease. Biochim Biophys Acta 390:125–132PubMedGoogle Scholar
  133. Shishido K, Ando T (1982) Single-strand-specific nucleases. In: Linn S, Roberts R (eds) Nucleases. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 155–185Google Scholar
  134. Shishido K, Ikeda Y (1970) Some properties of the polynucleotide segments isolated from heat-denatured DNA by digestion with a nuclease specific for single stranded DNA. J Biochem 67:759–765PubMedGoogle Scholar
  135. Shishido K, Ikeda Y (1971) Isolation of double-helical regions rich in adenine-thymine base pairing from bacteriophage f1 DNA. J Mol Biol 55:287–291 doi: 10.1016/0022-2836(71)90200-2 PubMedCrossRefGoogle Scholar
  136. Silber R, Malathi VG, Hurwitz J (1972) Purification and properties of bacteriophage T4-induced RNA ligase. Proc Natl Acad Sci USA 69:3009–3013 doi: 10.1073/pnas.69.10.3009 PubMedCrossRefGoogle Scholar
  137. Sistla S, Rao DN (2004) S-Adenosyl-L-methionine-dependent restriction enzymes. Crit Rev Biochem Mol Biol 39:1–19 doi: 10.1080/10409230490440532 PubMedCrossRefGoogle Scholar
  138. Stahl SJ, Zinn K (1981) Nucleotide sequence of the cloned gene for bacteriophage T7 RNA polymerase. J Mol Biol 148:481–485 doi: 10.1016/0022-2836(81)90187-X PubMedCrossRefGoogle Scholar
  139. Stenesh J, Roe BA, Snyder TL (1968) Studies of the deoxyribonucleic acid from mesophilic and thermophilic bacteria. Biochim Biophys Acta 161:442–454PubMedGoogle Scholar
  140. Sugino A, Snoper TJ, Cozzarelli NR (1977) Bacteriophage T4 RNA ligase. Reaction intermediates and interaction of substrates. J Biol Chem 252:1732–1738PubMedGoogle Scholar
  141. Sung SC, Laskowski M Sr (1962) A nuclease from mung bean sprouts. J Biol Chem 237:506–511PubMedGoogle Scholar
  142. Sutter D, Doerfler W (1980) Methylation of integrated adenovirus type 12 DNA sequences in transformed cells is inversely correlated with viral gene expression. Proc Natl Acad Sci USA 77:253–256 doi: 10.1073/pnas.77.1.253 PubMedCrossRefGoogle Scholar
  143. Tabor S, Richardson CC (1987) DNA sequence analysis with a modified bacteriophage T7 DNA polymerase. Proc Natl Acad Sci USA 84:4767–4771 doi: 10.1073/pnas.84.14.4767 PubMedCrossRefGoogle Scholar
  144. Tabor S, Richardson CC (1989) Selective inactivation of the exonuclease activity of bacteriophage T7 DNA polymerase by in vitro mutagenesis. J Biol Chem 264:6447–6458PubMedGoogle Scholar
  145. Tabor S, Huber HE, Richardson CC (1987) Escherichia coli thioredoxin confers processivity on the DNA polymerase activity of the gene 5 protein of bacteriophage T7. J Biol Chem 262:16212–16223PubMedGoogle Scholar
  146. Takahashi K (1961) The Structure and Function of Ribonuclease T1: I. Chromatographic purification and properties of ribonuclease T1. J Biochem 49:1–10Google Scholar
  147. Takahashi M, Yamaguchi E, Uchida T (1984) Thermophilic DNA ligase. Purification and properties of the enzyme from Thermus thermophilus HB8. J Biol Chem 259:10041–10047PubMedGoogle Scholar
  148. Talmadge K, Stahl S, Gilbert W (1980) Eukaryotic signal sequence transports insulin antigen in Escherichia coli. Proc Natl Acad Sci USA 77:3369–3373 doi: 10.1073/pnas.77.6.3369 PubMedCrossRefGoogle Scholar
  149. Temin HM, Mizutani S (1970) RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature 226:1211–1213 doi: 10.1038/2261211a0 PubMedCrossRefGoogle Scholar
  150. Tessier DC, Brousseau R, Vernet T (1986) Ligation of single-stranded oligodeoxyribonucleotides by T4 RNA ligase. Anal Biochem 158:171–178 doi: 10.1016/0003-2697(86)90606-8 PubMedCrossRefGoogle Scholar
  151. Theobald DL, Mitton-Fry RM, Wuttke DS (2003) Nucleic acid recognition by OB-fold proteins. Annu Rev Biophys Biomol Struct 32:115–133 doi: 10.1146/annurev.biophys.32.110601.142506 PubMedCrossRefGoogle Scholar
  152. Thorbjarnardottir SH, Jonsson ZO, Andresson OS, Kristjansson JK, Eggertsson G, Palsdottir A (1995) Cloning and sequence analysis of the DNA ligase-encoding gene of Rhodothermus marinus, and overproduction, purification and characterization of two thermophilic DNA ligases. Gene 161:1–6 doi: 10.1016/0378-1119(95)00286-F PubMedCrossRefGoogle Scholar
  153. Timson DJ, Wigley DB (1999) Functional domains of an NAD+-dependent DNA ligase. J Mol Biol 285:73–83 doi: 10.1006/jmbi.1998.2302 PubMedCrossRefGoogle Scholar
  154. Verma IM (1977) The reverse transcriptase. Biochim Biophys Acta 473:1–38PubMedGoogle Scholar
  155. Vogt VM (1973) Purification and further properties of single-strand-specific nuclease from Aspergillus oryzae. Eur J Biochem 33:192–200 doi: 10.1111/j.1432-1033.1973.tb02669.x PubMedCrossRefGoogle Scholar
  156. Vogt VM (1980) Purification and properties of S1 nuclease from Aspergillus. Methods Enzymol 65:248–255 doi: 10.1016/S0076-6879(80)65034-4 PubMedCrossRefGoogle Scholar
  157. Wang JC (1979) Helical repeat of DNA in solution. Proc Natl Acad Sci USA 76:200–203 doi: 10.1073/pnas.76.1.200 PubMedCrossRefGoogle Scholar
  158. Wei CF, Alianell GA, Bencen GH, Gray HB Jr (1983) Isolation and comparison of two molecular species of the BAL 31 nuclease from Alteromonas espejiana with distinct kinetic properties. J Biol Chem 258:13506–13512PubMedGoogle Scholar
  159. Weiss B (1976) Endonuclease II of Escherichia coli is exonuclease III. J Biol Chem 251:1896–1901PubMedGoogle Scholar
  160. Wensink PC, Finnegan DJ, Donelson JE, Hogness DS (1974) A system for mapping DNA sequences in the chromosomes of Drosophila melanogaster. Cell 3:315–325 doi: 10.1016/0092-8674(74)90045-2 PubMedCrossRefGoogle Scholar
  161. Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B et al (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982 doi: 10.1038/nrg2165 PubMedCrossRefGoogle Scholar
  162. Wiegand RC, Godson GN, Radding CM (1975) Specificity of the S1 nuclease from Aspergillus oryzae. J Biol Chem 250:8848–8855PubMedGoogle Scholar
  163. Wilson GG (1991) Organization of restriction-modification systems. Nucleic Acids Res 19:2539–2566 doi: 10.1093/nar/19.10.2539 PubMedCrossRefGoogle Scholar
  164. Zhang XH, Chiang VL (1996) Single-stranded DNA ligation by T4 RNA ligase for PCR cloning of 5′-noncoding fragments and coding sequence of a specific gene. Nucleic Acids Res 24:990–991 doi: 10.1093/nar/24.5.990 PubMedCrossRefGoogle Scholar
  165. Zinn K, DiMaio D, Maniatis T (1983) Identification of two distinct regulatory regions adjacent to the human beta-interferon gene. Cell 34:865–879 doi: 10.1016/0092-8674(83)90544-5 PubMedCrossRefGoogle Scholar

Copyright information

© The International CCN Society 2008

Authors and Affiliations

  1. 1.Department of DermatologyUniversity of MichiganAnn ArborUSA
  2. 2.Research and DevelopmentL’Oréal USAClarkUSA

Personalised recommendations