Advertisement

Chemosensory Perception

, Volume 9, Issue 1, pp 27–36 | Cite as

Olfactory Acuity and Automatic Associations to Odor Words Modulate Adverse Effects of Ammonia

  • Marlene Pacharra
  • Michael Schäper
  • Stefan Kleinbeck
  • Meinolf Blaszkewicz
  • Christoph van Thriel
Article

Abstract

Introduction

Adverse effects of malodorous chemicals in humans are usually described as negative emotional reactions and impaired cognitive performance. Sensory acuity and automatic associations to odor words could influence cognitive processing of chemosensory stimulation and such adverse effects. We hypothesized that adverse effects are amplified in individuals with lower olfactory acuity due to a more automatic and emotional odor evaluation process. In contrast, adverse effects should be attenuated if odor words such as smell automatically activate positive mental associations.

Methods

After the assessment of olfactory acuity and automatically activated associations in standardized tests, 37 women were exposed to ascending concentration steps of ammonia (0–10 ppm) in an exposure laboratory for 75 min. Participants rated hedonic valence, intensity, and pungency of ammonia and performed working memory and response inhibition tasks.

Results

Olfactory acuity modulated ratings of hedonic valence and working memory performance: Participants with lower olfactory acuity reported stronger odor unpleasantness and showed impaired performance compared to participants with higher olfactory acuity during the exposure to 10 ppm ammonia. In the lower olfactory acuity group, participants with strong automatic associations between odor words and positive valence rated ammonia at high concentrations to be less pungent than participants with weaker automatic associations.

Conclusions

We conclude that sensory acuity and automatically activated associations modulate chemosensory-mediated adverse effects of ammonia. Beyond established self-report measures, these individual characteristics could help explain differences in environmental odor annoyance.

Keywords

Chemosensory distraction Emotion Implicit association test N-Back 

Notes

Acknowledgments

This research was supported by the DGUV—German Social Accident Insurance, Berlin, Germany (FF-FP0326). The study sponsor had no influence in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the paper for publication.

The authors would like to thank Nicola Schmidt-Peucker, Eva Strzelec, Michael Porta, and Beate Aust for technical assistance and Leah Boccaccio for proofreading.

Compliance with Ethical Standards

Conflict of Interest

Marlene Pacharra, Michael Schäper, Stefan Kleinbeck, Meinolf Blaszkewicz, and Christoph van Thriel declare that they have no conflict of interest.

Ethical Approval

All procedures performed were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki declaration and its later amendments.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

References

  1. Anderson AK, Christoff K, Stappen I et al (2003) Dissociated neural representations of intensity and valence in human olfaction. Nat Neurosci 6:196–202. doi: 10.1038/nn1001 CrossRefGoogle Scholar
  2. Andersson L, Claeson AS, Ledin L, Wisting F, Nordin S (2013) The influence of health-risk perception and distress on reactions to low-level chemical exposure. Front Psychol 4:816. doi: 10.3389/fpsyg.2013.00816 Google Scholar
  3. Atanasova B, Graux J, El Hage W, Hommet C, Camus V, Belzung C (2008) Olfaction: a potential cognitive marker of psychiatric disorders. Neurosci Biobehav Rev 32:1315–1325. doi: 10.1016/j.neubiorev.2008.05.003 CrossRefGoogle Scholar
  4. Blanes-Vidal V, Nadimi ES, Ellermann T, Andersen HV, Lofstrom P (2012) Perceived annoyance from environmental odors and association with atmospheric ammonia levels in non-urban residential communities: a cross-sectional study. Environ Health 11:27. doi: 10.1186/1476-069X-11-27 CrossRefGoogle Scholar
  5. Bulsing PJ, Smeets MA, van den Hout MA (2007) Positive implicit attitudes toward odor words. Chem Senses 32:525–534. doi: 10.1093/chemse/bjm021 CrossRefGoogle Scholar
  6. Bulsing PJ, Smeets MA, van den Hout MA (2009) The implicit association between odors and illness. Chem Senses 34:111–119. doi: 10.1093/chemse/bjn062 CrossRefGoogle Scholar
  7. Danuser B, Moser D, Vitale-Sethre T, Hirsig R, Krueger H (2003) Performance in a complex task and breathing under odor exposure. Hum Factors 45:549–562. doi: 10.1518/hfes.45.4.549.27093 CrossRefGoogle Scholar
  8. Doty RL, Smith R, McKeown DA, Raj J (1994) Tests of human olfactory function: principal components analysis suggests that most measure a common source of variance. Percept Psychophys 56:701–707. doi: 10.3758/BF03208363 CrossRefGoogle Scholar
  9. Duncko R, Johnson L, Merikangas K, Grillon C (2009) Working memory performance after acute exposure to the cold pressor stress in healthy volunteers. Neurobiol Learn Mem 91:377–381. doi: 10.1016/j.nlm.2009.01.006 CrossRefGoogle Scholar
  10. Green BG, Dalton P, Cowart B, Shaffer G, Rankin K, Higgins J (1996) Evaluating the ‘Labeled Magnitude Scale’ for measuring sensations of taste and smell. Chem Senses 21:323–334. doi: 10.1093/chemse/21.3.323 CrossRefGoogle Scholar
  11. Greenwald AG, McGhee DE, Schwartz JL (1998) Measuring individual differences in implicit cognition: the implicit association test. J Pers Soc Psychol 74:1464–1480. doi: 10.1037/0022-3514.74.6.1464 CrossRefGoogle Scholar
  12. Greenwald AG, Nosek BA, Banaji MR (2003) Understanding and using the implicit association test: I. An improved scoring algorithm. J Pers Soc Psychol 85:197–216. doi: 10.1037/0022-3514.85.2.197 CrossRefGoogle Scholar
  13. Habel U, Koch K, Pauly K et al (2007) The influence of olfactory-induced negative emotion on verbal working memory: individual differences in neurobehavioral findings. Brain Res 1152:158–170. doi: 10.1016/j.brainres.2007.03.048 CrossRefGoogle Scholar
  14. Habel U, Pauly K, Koch K et al (2010) Emotion-cognition interactions in schizophrenia. World J Biol Psychiatry 11:934–944. doi: 10.3109/15622975.2010.501820 CrossRefGoogle Scholar
  15. Hedner M, Larsson M, Arnold N, Zucco GM, Hummel T (2010) Cognitive factors in odor detection, odor discrimination, and odor identification tasks. J Clin Exp Neuropsychol 32:1062–1067. doi: 10.1080/13803391003683070 CrossRefGoogle Scholar
  16. Hey K, Juran SA, Schäper M et al (2009) Neurobehavioral effects during exposures to propionic acid—an indicator of chemosensory distraction? Neurotoxicology 30:1223–1232. doi: 10.1016/j.neuro.2009.08.009 CrossRefGoogle Scholar
  17. Hummel T, Livermore A (2002) Intranasal chemosensory function of the trigeminal nerve and aspects of its relation to olfaction. Int Arch Occup Environ Health 75:305–313. doi: 10.1007/s00420-002-0315-7 CrossRefGoogle Scholar
  18. Hummel T, Sekinger B, Wolf SR, Pauli E, Kobal G (1997) ‘Sniffin’ sticks’: olfactory performance assessed by the combined testing of odor identification, odor discrimination and olfactory threshold. Chem Senses 22:39–52. doi: 10.1093/chemse/22.1.39
  19. Hummel T, Kobal G, Gudziol H, Mackay-Sim A (2007) Normative data for the “Sniffin’ Sticks” including tests of odor identification, odor discrimination, and olfactory thresholds: an upgrade based on a group of more than 3,000 subjects. Eur Arch Otorhinolaryngol 264:237–243. doi: 10.1007/s00405-006-0173-0 CrossRefGoogle Scholar
  20. Hüttenbrink KB, Hummel T, Berg D, Gasser T, Hähner A (2013) Olfactory dysfunction: common in later life and early warning of neurodegenerative disease. Dtsch Arztebl Int 110:1–7. doi: 10.3238/arztebl.2013.0001 Google Scholar
  21. Juran SA, van Thriel C, Kleinbeck S, Schäper M, Falkenstein M, Iregren A, Johanson G (2012) Neurobehavioral performance in human volunteers during inhalation exposure to the unpleasant local irritant cyclohexylamine. Neurotoxicology 33:1180–1187. doi: 10.1016/j.neuro.2012.06.014 CrossRefGoogle Scholar
  22. Juran SA, van Thriel C, Kleinbeck S, Schäper M, Falkenstein M, Iregren A, Johanson G (2013) Electrophysiological correlates of impaired response inhibition during inhalation of propionic acid. J Psychophysiol 27:131–141. doi: 10.1027/0269-8803/a000098 CrossRefGoogle Scholar
  23. Juran SA, Johanson G, Ernstgard L, Iregren A, van Thriel C (2014) Neurobehavioral performance in volunteers after inhalation of white spirits with high and low aromatic content. Arch Toxicol 88:1127–1140. doi: 10.1007/s00204-014-1236-4 CrossRefGoogle Scholar
  24. Kärnekull SC, Jonsson FU, Larsson M, Olofsson JK (2011) Affected by smells? Environmental chemical responsivity predicts odor perception. Chem Senses 36:641–648. doi: 10.1093/chemse/bjr028 CrossRefGoogle Scholar
  25. Knaapila A, Tuorila H, Kyvik KO et al (2008) Self-ratings of olfactory function reflect odor annoyance rather than olfactory acuity. Laryngoscope 118:2212–2217. doi: 10.1097/MLG.0b013e3181826e43 CrossRefGoogle Scholar
  26. Koch K, Pauly K, Kellermann T et al (2007) Gender differences in the cognitive control of emotion: an fMRI study. Neuropsychologia 45:2744–2754. doi: 10.1016/j.neuropsychologia.2007.04.012 CrossRefGoogle Scholar
  27. Liden E, Nordin S, Hogman L, Ulander A, Deniz F, Gunnarsson AG (1998) Assessment of odor annoyance and its relationship to stimulus concentration and odor intensity. Chem Senses 23:113–117. doi: 10.1093/chemse/23.1.113 CrossRefGoogle Scholar
  28. Lim J, Wood A, Green BG (2009) Derivation and evaluation of a labeled hedonic scale. Chem Senses 34:739–751. doi: 10.1093/chemse/bjp054 CrossRefGoogle Scholar
  29. Lundström JN, Seven S, Olsson MJ, Schaal B, Hummel T (2006) Olfactory event-related potentials reflect individual differences in odor valence perception. Chem Senses 31:705–711. doi: 10.1093/chemse/bjl012 CrossRefGoogle Scholar
  30. Mainland J, Sobel N (2006) The sniff is part of the olfactory percept. Chem Senses 31:181–196. doi: 10.1093/chemse/bjj012 CrossRefGoogle Scholar
  31. Martin GN, Chaudry A (2014) Working memory performance and exposure to pleasant and unpleasant ambient odor: is spatial span special? Int J Neurosci 124:806–11. doi: 10.3109/00207454.2014.890619 CrossRefGoogle Scholar
  32. Maxwell SE, Delaney HD (1993) Bivariate median splits and spurious statistical significance. Psychol Bull 113:181–190. doi: 10.1037/0033-2909.113.1.181 CrossRefGoogle Scholar
  33. Millot JL, Brand G, Morand N (2002) Effects of ambient odors on reaction time in humans. Neurosci Lett 322:79–82. doi: 10.1016/S0304-3940(02)00092-7 CrossRefGoogle Scholar
  34. Nordin S, Claeson A-S, Andersson M, Sommar L, Andrée J, Lundqvist K, Andersson L (2013) Impact of health-risk perception on odor perception and cognitive performance. Chemosens Percept 6:190–197. doi: 10.1007/s12078-013-9153-0 CrossRefGoogle Scholar
  35. Österberg K, Ørbæk P, Karlson B, Akesson B, Bergendorf U (2003) Annoyance and performance during the experimental chemical challenge of subjects with multiple chemical sensitivity. Scand J Work Environ Health 29:40–50. doi: 10.5271/sjweh.703 CrossRefGoogle Scholar
  36. Österberg K, Persson R, Karlson B, Ørbæk P (2004) Annoyance and performance of three environmentally intolerant groups during experimental challenge with chemical odors. Scand J Work Environ Health 30:486–496. doi: 10.5271/sjweh.838 CrossRefGoogle Scholar
  37. Reske M, Kellermann T, Shah NJ, Schneider F, Habel U (2010) Impact of valence and age on olfactory induced brain activation in healthy women. Behav Neurosci 124:414–422. doi: 10.1037/a0019289 CrossRefGoogle Scholar
  38. Rohlman DS, Lucchini R, Anger WK, Bellinger DC, van Thriel C (2008) Neurobehavioral testing in human risk assessment. Neurotoxicology 29:556–567. doi: 10.1016/j.neuro.2008.04.003 CrossRefGoogle Scholar
  39. Schneider F, Koch K, Reske M et al (2006) Interaction of negative olfactory stimulation and working memory in schizophrenia patients: development and evaluation of a behavioral neuroimaging task. Psychiatry Res 144:123–130. doi: 10.1016/j.psychres.2004.12.013 CrossRefGoogle Scholar
  40. Seubert J, Freiherr J, Frasnelli J, Hummel T, Lundström JN (2013) Orbitofrontal cortex and olfactory bulb volume predict distinct aspects of olfactory performance in healthy subjects. Cereb Cortex 23:2448–2456. doi: 10.1093/cercor/bhs230 CrossRefGoogle Scholar
  41. Smeets MAM, Dijksterhuis GB (2014) Smelly primes—when olfactory primes do or do not work. Front Psychol 5:96. doi: 10.3389/fpsyg.2014.00096 CrossRefGoogle Scholar
  42. Smeets MA, Bulsing PJ, van Rooden S et al (2007) Odor and irritation thresholds for ammonia: a comparison between static and dynamic olfactometry. Chem Senses 32:11–20. doi: 10.1093/chemse/bjl031 CrossRefGoogle Scholar
  43. Sucker K, Both R, Bischoff M, Guski R, Kramer U, Winneke G (2008) Odor frequency and odor annoyance. Part II: dose-response associations and their modification by hedonic tone. Int Arch Occup Environ Health 81:683–694. doi: 10.1007/s00420-007-0262-4 CrossRefGoogle Scholar
  44. Thuerauf N, Reulbach U, Lunkenheimer J et al (2009) Emotional reactivity to odors: olfactory sensitivity and the span of emotional evaluation separate the genders. Neurosci Lett 456:74–79. doi: 10.1016/j.neulet.2009.03.096 CrossRefGoogle Scholar
  45. Tsuchida A, Fellows LK (2008) Lesion evidence that two distinct regions within prefrontal cortex are critical for n-back performance in humans. J Cogn Neurosci 21:2263–2275. doi: 10.1162/jocn.2008.21172 CrossRefGoogle Scholar
  46. van Thriel C, Kiesswetter E, Blaszkewicz M, Golka K, Seeber A (2003) Neurobehavioral effects during experimental exposure to 1-octanol and isopropanol. Scand J Work Environ Health 29:143–151. doi: 10.5271/sjweh.716 CrossRefGoogle Scholar
  47. van Thriel C, Kiesswetter E, Schäper M et al (2007) From neurotoxic to chemosensory effects: new insights on acute solvent neurotoxicity exemplified by acute effects of 2-ethylhexanol. Neurotoxicology 28:347–355. doi: 10.1016/j.neuro.2006.03.008 CrossRefGoogle Scholar
  48. Van Thriel C, Kiesswetter E, Schäper M, Juran SA, Blaszkewicz M, Kleinbeck S (2008) Odor annoyance of environmental chemicals: sensory and cognitive influences. J Toxicol Environ Health A 71:776–785. doi: 10.1080/15287390801985596 CrossRefGoogle Scholar
  49. Wehling E, Lundervold AJ, Nordin S (2014) Does it matter how we pose the question “how is your sense of smell?”. Chemosens Percept 7:103–107. doi: 10.1007/s12078-014-9171-6 CrossRefGoogle Scholar
  50. Witthöft M, Rist F, Bailer J (2009) Abnormalities in cognitive-emotional information processing in idiopathic environmental intolerance and somatoform disorders. J Behav Ther Exp Psychiatry 40:70–84. doi: 10.1016/j.jbtep.2008.04.002 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Marlene Pacharra
    • 1
  • Michael Schäper
    • 1
  • Stefan Kleinbeck
    • 1
  • Meinolf Blaszkewicz
    • 1
  • Christoph van Thriel
    • 1
  1. 1.Leibniz Research Centre for Working Environment and Human Factors at the TU Dortmund UniversityDortmundGermany

Personalised recommendations