Chemosensory Perception

, Volume 4, Issue 4, pp 163–174 | Cite as

Use of an Immediate Swallow Protocol to Assess Taste and Aroma Integration in fMRI Studies

  • Sally Eldeghaidy
  • Luca Marciani
  • Johann C. Pfeiffer
  • Joanne Hort
  • Kay Head
  • Andrew J. Taylor
  • Robin C. Spiller
  • Penny A. Gowland
  • Susan FrancisEmail author


Perception of flavor is a complex process involving the integration of taste and aroma. Few functional magnetic resonance imaging (fMRI) studies have assessed the crossmodal interactions which result in flavor perception, and all previous studies have used a retro-nasal aroma delivery with a delayed swallow, which delays retro-nasal aroma release, and thus, alters taste and aroma integration. In this paper, we assess crossmodal interactions in flavor processing using an immediate swallow fMRI paradigm in 13 healthy volunteers. We compare unimodal taste (sucrose) and unimodal retro-nasal aroma stimuli, with a congruent taste and aroma combination (flavor), to assess crossmodal flavor interactions using an immediate swallow paradigm. Subtraction and conjunction analysis methods are described, and the use of a control stimulus is addressed. Subtraction analysis was found to reveal areas of anterior insula, frontal operculum, anterior cingulate, and orbitofrontal cortex, whilst the conjunction analysis revealed additional active areas in oral somatosensory areas (SI), rolandic operculum and posterior cingulate, supporting the hypothesis that taste, olfactory, and tactile sensations are integrated to produce a flavor percept.


Flavor Taste Aroma Integration Crossmodal fMRI 

Abbreviations used


Unimodal aroma stimulus


Anterior cingulate cortex


Atmospheric-pressure chemical ionization mass spectrometry


Blood oxygenation level dependent


Control stimulus


Congruent stimulus


Echo-planar imaging


Functional magnetic resonance imaging


Family-wise error


Full width at half maximum


Hemodynamic response function


Isoamyl acetate


Incongruent stimulus


Montreal Neurological Institute


Orbitofrontal cortex


Positron emission tomography


Unimodal taste stimulus


Flavor stimulus as in combined taste and aroma stimuli


Echo time



The Biotechnology and Biological Sciences Research Council (Swindon, UK) is thanked for their financial support.


  1. Boyle JA, Frasnelli J, Gerber J et al (2007) Cross-modal integration of intranasal stimuli: a function magnetic imaging study. Neuroscience 149:223–231CrossRefGoogle Scholar
  2. Calvert G (2001) Crossmodal processing in the human brain: insights from functional neuroimaging studies. Cereb Cortex 11:1110–1123CrossRefGoogle Scholar
  3. Cook DJ, Hollowood TA, Linforth RST et al (2003) Oral shear stress predicts flavour perception in viscous solutions. Chem Senses 28:11–23CrossRefGoogle Scholar
  4. Dalton P, Doolittle N, Nagata H et al (2000) The merging of senses: Integration of subthreshold taste and smell. Nat Neurosci 3:431–432CrossRefGoogle Scholar
  5. De Araujo IET, Rolls ET, Kringelbach ML et al (2003) Taste-olfactory convergence, and the representation of the pleasantness of flavour, in the human brain. Eur J Neurosci 18:2059–2068CrossRefGoogle Scholar
  6. Dolan RJ, Morris JS, de Gelder B (2001) Crossmodal binding of fear in voice and face. PNAS 98(17)Google Scholar
  7. Frank R, Byram J (1988) Taste-smell interactions are tastant and odorant dependent. Chem Senses 13:445–455CrossRefGoogle Scholar
  8. Friston KJ, Fletcher P, Josephs O et al (1998) Event-related fMRI: Characterizing differential responses. NeuroImage 7:30–40CrossRefGoogle Scholar
  9. Hollowood TA, Linforth RST, Taylor AJ (2002) The effect of viscosity on the perception of flavour. Chem Senses 27:583–591CrossRefGoogle Scholar
  10. Homung DE, Enns MP (1994) The synergistic action of the taste and smell components of flavour. In: Birch G, Campbell-Platt G (eds) Synergy. Intercept, Andover, pp 145–154Google Scholar
  11. Hort J, Hollowood TA (2004) Controlled continuous flow delivery system for investigating taste-aroma interactions. J Agric Food Chem 52:4834–4843CrossRefGoogle Scholar
  12. Johnson-Frey SH, Maloof FR, Newman-Norlund R et al (2003) Actions or hand-object interactions? Human inferior frontal cortex and action observation. Neuron 39:1053–1058CrossRefGoogle Scholar
  13. Leung H, Cai W (2007) Common and differential ventrolateral prefrontal activity during inhibition of hand and eye movements. Neuroscience 27(37):9893–9900CrossRefGoogle Scholar
  14. Logothetis NK (2008) What we can do and what we cannot do with fMRI. Nature 453:869–878CrossRefGoogle Scholar
  15. Marciani L, Pfeiffer J, Hort J et al (2006) Improved methods for fMRI studies of combined taste and aroma stimuli. J Neurosci Methods 158:186–194CrossRefGoogle Scholar
  16. McCabe C, Rolls E (2007) Umami: a delicious flavor formed by convergence of taste and olfactory pathways in the human brain. Eur J Neurosci 25:1855–1864CrossRefGoogle Scholar
  17. O’Doherty J, Rolls ET, Francis S et al (2001) Representation of pleasant and aversive taste in the human brain. J Neurophysiol 85:1315–1321Google Scholar
  18. Posse S, Wiese S, Gembris D et al (1999) Enhancement of BOLD-contrast sensitivity by single-shot multi-echo functional MR imaging. Magn Reson Med 42:87–97CrossRefGoogle Scholar
  19. Rolls ET, Baylis LL (1994) Gustatory, olfactory, and visual convergence within the primate orbitofrontal cortex. J Neurosci Methods 14:5437–5452Google Scholar
  20. Rolls ET, Verhagen JV, Kadohisa M (2003) Representations of the texture of food in the primate orbitofrontal cortex: neurons responding to viscosity, grittiness, and capsaicin. J Neurophysiol 90:3711–3724CrossRefGoogle Scholar
  21. Small DM (2008) Flavor and the formation of category-specific processing in olfaction. Chem Percept 1:136–146CrossRefGoogle Scholar
  22. Small DM, Prescott J (2005) Odor/taste integration and the perception of flavor. Exp Brain Res 166:345–357CrossRefGoogle Scholar
  23. Small DM, Jones-Gotman M, Zatorre RJ et al (1997) Flavor processing: more than the sum of its parts. Neuroreport 8:3913–3917CrossRefGoogle Scholar
  24. Small DM, Voss J, Mak YE et al (2004) Experience-dependent neural integration of taste and smell in the human brain. J Neurophysiol 92:1892–1903CrossRefGoogle Scholar
  25. Verhagen JV, Engelen L (2006) The neurocognitive bases of human multimodal food perception: sensory integration. Neurosci Biobehav Rev 30:613–650CrossRefGoogle Scholar
  26. Zald DH, Pardo JV (2000) Cortical activation induced by intraoral stimulation with water in humans. Chem Senses 25:267–275CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2011

Authors and Affiliations

  • Sally Eldeghaidy
    • 1
  • Luca Marciani
    • 2
  • Johann C. Pfeiffer
    • 3
  • Joanne Hort
    • 3
  • Kay Head
    • 1
  • Andrew J. Taylor
    • 3
  • Robin C. Spiller
    • 2
  • Penny A. Gowland
    • 1
  • Susan Francis
    • 1
  1. 1.Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
  2. 2.Nottingham Digestive Diseases Centre, NIHR Biomedical Research Unit, Nottingham University HospitalsUniversity of NottinghamNottinghamUK
  3. 3.Flavor Research Group, Division of Food SciencesUniversity of NottinghamLeicestershireUK

Personalised recommendations